资源预览内容
第1页 / 共41页
第2页 / 共41页
第3页 / 共41页
第4页 / 共41页
第5页 / 共41页
第6页 / 共41页
第7页 / 共41页
第8页 / 共41页
第9页 / 共41页
第10页 / 共41页
亲,该文档总共41页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
3.3 热点专题导数综合应用的热点问题 热点一 利用导数研究函数性质的综合问题 利用导数研究函数的单调性、极值和最值均是命题的重点内容,在选择题、填空题和解答题中都有涉及主要有以下两种考查形式:,(1)研究具体函数的单调性、极值或最值,常涉及分类讨论思想 (2)由函数的单调性、极值或最值,求解参数的值或取值范围 【例1】 (2017成都模拟)已知关于x的函数f(x)ln xa(x1)2(aR) (1)求函数f(x)在点P(1,0)处的切线方程; (2)若函数f(x)有极小值,试求a的取值范围; (3)若在区间1,)上,函数f(x)不出现在直线yx1的上方,试求a的最大值,【方法规律】 函数性质综合问题的难点是函数单调性和极值、最值的分类讨论 (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置进行讨论,(2)极值讨论策略:极值的讨论以单调性的讨论为基础,根据函数的单调性确定函数的极值点 (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值,故函数f(x)的单调递增区间是(0,1)和(a1,),单调递减区间是(1,a1) 当0a11,即1a2时,在区间(0,a1)和 (1,)上,f(x)0;在区间(a1,1)上,f(x)0,故函数f(x)的单调递增区间是(0,a1)和(1,),单调递减区间是(a1,1) 当a10,即a1时,在区间(0,1)上,f(x)0,在区间(1,)上,f(x)0,故函数f(x)的单调递增区间是(1,),单调递减区间是(0,1),热点二 利用导数研究方程的根或函数的零点问题 此类试题一般以含参数的三次式、分式、以e为底的指数式或对数式及三角式结构的函数零点或方程根的形式出现,是近几年高考命题热点,一般有两种考查形式: (1)确定函数零点、图象交点及方程根的个数问题 (2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题,令h(x)g(x),则h(x)(axln abxln b)ax(ln a)2bx(ln b)2, 从而对任意xR,h(x)0,所以g(x)h(x)是(,)上的单调增函数 于是当x(,x0)时,g(x)g(x0)0;当x(x0,)时,g(x)g(x0)0. 因而函数g(x)在(,x0)上是单调减函数,在(x0,)上是单调增函数 下证x00.,【方法规律】 对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围,变式训练 2(2017济南模拟)已知函数f(x)exaxa(aR且a0) (1)若函数f(x)在x0处取得极值,求实数a的值,并求此时f(x)在2,1上的最大值; (2)若函数f(x)不存在零点,求实数a的取值范围,【解析】 (1)函数f(x)的定义域为R,f(x)exa,f(0)e0a0,a1, f(x)ex1. 在区间(,0)上,f(x)0,f(x)单调递减;在区间(0,)上,f(x)0,f(x)单调递增 在x0处,f(x)取得极小值, a1.,当a0时,函数f(x)存在零点,不满足题意 当a0时,令f(x)exa0,解得xln(a) 在区间(,ln(a)上,f(x)0,f(x)单调递减;在区间(ln(a),)上,f(x)0,f(x)单调递增, 当xln(a)时,f(x)取得最小值 函数f(x)不存在零点等价于f(ln(a)eln(a)aln(a)a2aaln(a)0, 解得e2a0. 综上所述,实数a的取值范围是(e2,0),热点三 利用导数解决不等式问题 利用导数解决不等式问题是近几年高考热点,常涉及不等式恒成立、证明不等式及大小比较问题 (1)不等式恒成立问题一般考查三次式、分式、以e为底的指数式或对数式、三角式及绝对值结构的不等式在某个区间A上恒成立(存在性),求参数取值范围 (2)证明不等式一般是证明与函数有关的不等式在某个范围内成立,(3)大小比较问题,一般是作差后不易变形定号的三次 式、分式、以e为底的指数式或对数式、三角式结构,可转化为用导数研究其单调性或最值的函数问题 角度一 不等式的恒成立问题 【例3】 (2017西安八校联考)已知函数f(x)m(x1)exx2(mR) (1)若m1,求函数f(x)的单调区间; (2)若对任意的x0,不等式x2(m2)xf(x)恒成立,求m的取值范围,【解析】 (1)当m1时,f(x)(1x)exx2, 则f(x)x(2ex), 由f(x)0得,0xln 2, 由f(x)0得x0或xln 2, 故函数f(x)的单调递增区间为(0,ln 2),单调递减区间为(,0),(ln 2,),【方法规律】 求解不等式恒成立时参数的取值范围问题,一般常用分离参数的方法,但是如果分离参数后对应的函数不便于求解其最值,或者求解其函数最值繁琐时,可采用直接构造函数的方法求解,(2)已知函数f(x)axx2xln a(a0,a1) 求函数f(x)在点(0,f(0)处的切线方程; 求函数f(x)的单调递增区间; 若存在x1,x21,1,使得|f(x1)f(x2)|e1(e是自然对数的底数),求实数a的取值范围,(2)对f(x)求导,得f(x)axln a2xln a,可得f(0)0. 因为f(0)1,所以函数f(x)在点(0,f(0)处的切线方程为y1. 由知,f(x)axln a2xln a2x(ax1)ln a. 因为当a0,a1时,总有f(x)在R上是增函数, 又f(0)0,所以不等式f(x)0的解集为(0,),,故函数f(x)的单调递增区间为0,) 因为存在x1,x21,1,使得|f(x1)f(x2)|e1成立, 而当x1,1时,|f(x1)f(x2)|f(x)maxf(x)min, 所以只需f(x)maxf(x)mine1即可 对于x1,1,f(x),f(x)的变化情况如下表所示:,
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号