资源预览内容
第1页 / 共94页
第2页 / 共94页
第3页 / 共94页
第4页 / 共94页
第5页 / 共94页
第6页 / 共94页
第7页 / 共94页
第8页 / 共94页
第9页 / 共94页
第10页 / 共94页
亲,该文档总共94页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第五章 静定平面桁架,桁架是由杆件相互连接组成的格构状体系,它的结点均为完全铰结的结点,它受力合理用料省,在建筑工程中得到广泛的应用。,1、桁架的计算简图(truss structure),武汉长江大桥所采用的桁架型式,屋架,计算简图,5-1 平面桁架的计算简图,空间桁架荷载传递途径:,荷载传递: 轨枕- 纵梁- 结点横梁- 主桁架,5-1 平面桁架的计算简图,经抽象简化后,杆轴交于一点,且“只受结点荷 载作用的直杆、铰结体系”的工程结构桁架,桁架各部分名称:,5-1 平面桁架的计算简图,桁架计算简图假定:,(1) 各杆在两端用绝对光滑而无摩擦的铰(理想铰)相互联结。,(2) 各杆的轴线都是直线,而且处在同一平面内,并且通过铰的几何中心。,(3) 荷载和支座反力都作用在结点上,其作用线都在桁架平面内。,思考: 实际桁架是否完全符合上述假定?,主内力: 按理想桁架算出的内力,各杆只有轴力。,实际桁架不完全符合上述假定, 但次内力的影响是次要的。,5-1 平面桁架的计算简图,次内力:实际桁架与理想桁架之间的差异引起的杆件弯曲,由此引起的内力。,2、桁架的分类,一、根据维数分类 1). 平面(二维)桁架(plane truss) 所有组成桁架的杆件以及荷载的作用线都在同一平面内,5-1 平面桁架的计算简图,2). 空间(三维)桁架(space truss) 组成桁架的杆件不都在同一平面内,5-1 平面桁架的计算简图,二、按外型分类,1. 平行弦桁架,2. 三角形桁架,3. 抛物线桁架,5-1 平面桁架的计算简图,三、按几何组成分类,2. 联合桁架 (combined truss),3. 复杂桁架(complicated truss),5-1 平面桁架的计算简图,四、按受力特点分类,2. 拱式桁架,竖向荷载下将产生水平反力,1. 梁式桁架,5-1 平面桁架的计算简图,二、桁架的内力计算,1. 结点法和截面法,结点法最适用于计算简单桁架。,取结点为隔离体,建立(汇交力系)平衡方程求解。原则上应使每一结点只有两根未知内力的杆件。,通常假定未知的轴力为拉力,计算结果得负值表示轴力为压力。,5-2 结点法,例5-1 试用结点法求三角形桁架各杆轴力。,解: (1) 求支座反力。,(),(),(2) 依次截取结点A,G,E,C,画出受力图,由平衡条件求其未知轴力。,5-2 结点法,取A点为隔离体,由,(拉),所以,5-2 结点法,取G点为隔离体,5-2 结点法,取E点为隔离体,由,5-2 结点法,取C点为隔离体,由,得,,,,,5-2 结点法,可以看出,桁架在对称轴右边各杆的内力与左边是对称相等的。,结论:对称结构,荷载也对称,则内力也是对称的。,5-2 结点法,以结点作为平衡对象,结点承受汇交力系作用。 按与“组成顺序相反”的原则,逐次建立各结点的平衡方程,则桁架各结点未知内力数目一定不超过独立平衡方程数。 由结点平衡方程可求得桁架各杆内力。,小结:,5-2 结点法,1. 对于一些特殊的结点,可以应用平衡条件直 接判断该结点的某些杆件的内力为零。 零杆,(1) 两杆交于一点,若结点无荷载,则两杆的内力都 为零。,5-2 结点法,结点法计算简化的途径:,(2) 三杆交于一点,其中两杆共线,若结点无荷载,则 第三杆是零杆,而在直线上的两杆内力大小相等,且性质相 同(同为拉力或压力)。,5-2 结点法,(3) 四杆交于一点,其中两两共线,若结点无荷载,则 在同一直线上的两杆内力大小相等,且性质相同。,推论,若将其中一杆换成外力F,则与F 在同一直 线上的杆的内力大小为F ,性质与F 相同。,5-2 结点法,(4) 四杆交于一点,其中两两共线,若结点无荷载,则 在同一直线上的两杆内力大小相等,且性质相同。,5-2 结点法,值得注意:若事先把零杆剔出后再进行计算,可使计算大为简化。,5-2 结点法,零杆: 轴力为零的杆,练习: 试指出零杆,受力分析时可以去掉零杆, 是否说该杆在结构中是可 有可无的?,5-2 结点法,5-2 结点法,练习: 试指出零杆,5-2 结点法,练习: 试指出零杆,下图示对称结构在正对称荷载作用下,若A 点无外荷载,则位于对称轴上的杆1、2都是零杆。,练习: 试指出零杆,5-2 结点法,为什么?,结点法计算简化的途径:,2.对称结构受对称荷载作用, 内力和反力均为对称: 受反对称荷载作用, 内力和反力均为反对称。,E 点无荷载,红色杆不受力,垂直对称轴的杆不受力,对称轴处的杆不受力,5-2 结点法,应用范围 1、求指定杆件的内力; 2、计算联合桁架。,截面法定义: 作一截面将桁架分成两部分,然后任取一部分为隔离体 (隔离体包含一个以上的结点),根据平衡条件来计算所截杆件的内力。,联合桁架(联合杆件),指定杆件(如斜杆),5-3 截面法,截面法计算步骤,2. 作截面(用平截面,也可用曲截面)截断桁架,取隔离体;,3. (1)选取矩心,列力矩平衡方程(力矩法)(2)列投影方程(投影法);,4. 解方程。,1. 求反力(同静定梁);,注意事项,1、尽量使所截断的杆件不超过三根(隔离体上未知力不超过三个), 可一次性求出全部内力;,2、选择适宜的平衡方程,最好使每个方程中只包含一个未知力, 避免求解联立方程。,3、若所作截面截断了三根以上的杆件,但只要在被截各杆中, 除一杆外,其余均汇交于一点(力矩法)或均平行(投影法),则该杆 内力仍可首先求得。,分类 力矩法和投影法,5-3 截面法,示例1:试求图示桁架中杆EF、ED,CD,DG的内力。,截面如何选择?,5-3 截面法,解: (1) 求出支座反力FA和FB。,(2) 求下弦杆CD内力,利用I-I截面 ,力矩法,FAd-F1d-F20-FNCDh=0,FNCD=(FAd-F1d-F20)/h,与等代梁比较,得出:FNCD=M0E/h (自己总结),当荷载向下时,M0E为正,FNCD为拉力,即简支桁架下弦杆受拉。,取EF和ED杆的交点E为矩心, CD杆内力臂为竖杆 高h,由力矩平衡方程ME=0,可求CD杆内力。,5-3 截面法,(3) 求上弦杆EF内力,FA2d-F12d-F2d+FxEFH=0,FxEF=-(FA2d-F12d-F2d)/H,与等代梁比较,得出: FxEF=-M0D/H, 再由比例关系求FNEF。,当荷载向下时,M0D为正,FNEF为压力,即简支桁架上弦杆受压。,取ED和CD杆的交点D为矩心,由力矩平衡方程MD=0,先求EF杆的水平分力FxEF,此时力臂即为桁高H。,5-3 截面法,(4) 斜杆ED,-FAa+F1a+F2(a+d)+FyED (a+2d) =0,FyED=(FAa-F1a-F2(a+d)/ (a+2d),再由比例关系求FNED,其拉或压需视上式右端分子 为正或为负而定。,取EF和CD杆的延长线交点O为矩心,并将FNED在D点分解为水平和竖向分力FxED和 FyED,由力矩平衡方程MO=0,先求ED杆的竖向分力FyED,此时力臂即为a+2d。,(5) DG杆如何求?,利用II-II截面 ,投影法,5-3 截面法,示例2:试求图示桁架a 杆的内力。,解 (1) 求支座反力。,(2)直接求出a 杆的位置困难。首先作截面-,求出FNEC ,然后取结点E 就可求出a 杆的轴力。,作截面-,取截面左侧部份为隔离体,由,故,5-3 截面法,(3) 取结点E 为隔离体,由,思考:是否还有不同的途径可以求出FN?,5-3 截面法,截面单杆: 用截面切开后,通过一个方程 可求出内力的杆.,截面上被切断的未知轴力的 杆件只有三个,三杆均为单杆.,截面上被切断的未知轴力的 杆件除一个外交于一点,该杆 为单杆.,截面上被切断的未知轴力的 杆件除一个均平行, 该杆为单 杆.,截面法技巧:,5-3 截面法,a为截面单杆,5-3 截面法,b为截面单杆,5-3 截面法,练习:求图示桁架指定杆件内力(只需指出所选截面即可),5-3 截面法,5-3 截面法,5-3 截面法,5-3 截面法,在桁架的计算中,结点法和截面法一般结合起来使用。 尤其当()只求某几个杆力时; ()联合桁架或复杂桁架的计算。,例5-1 试求图示 K 式桁架中a 杆和b杆的内力。,如何合理选择截面?,杆件数大于3,5.4 截面法与结点法的联合应用,截取结点K为隔离体, 由K形结点的特性可知(结点法),FNa=-FNc 或 Fya=-Fyc,由截面I-I(截面法)根据Fy=0有 3F-F/2-F-F+Fya-Fyc=0,即 F/2+2Fya=0 得Fya=-F/4,由比例关系得 FNa=-F/45/3=-F/12,截面法不能直接求解,5.4 截面法与结点法的联合应用,由截面I-I(截面法)根据MC=0即可求得FNb,,FNb=-(3F8-F/28-F4)/6=-8F/3,也可作截面II-II(曲截面)并取左半边为隔离体,(更简捷),由MD=0,FNb6+3F8-F/28-F4=0,5.4 截面法与结点法的联合应用,例5-2 试求图示桁架HC 杆的内力。,支座反力如图。,取截面I-I以左为隔离体,由MF=0可得 FNDE=905/4=112.5kN(拉)(截面法-力矩法),由结点E的平衡得 FNEC=FNED=112.5kN (拉),5.4 截面法与结点法的联合应用,再取截面II-II以右为隔离体,由MG=0并将FNHC在C点分解为水平和竖向分力,可得 FxHC=(3015-112.56)/6=-37.5kN(拉),FyHC过铰G,不产生力矩,先求FxHC(截面法-力矩法),由几何关系 FNHC=-40.4kN,5.4 截面法与结点法的联合应用,对称结构:几何形状和支座对某轴对称的结构.,对称荷载:作用在对称结构对称轴两侧,大小相等,方向和作 用点对称的荷载,反对称荷载:作用在对称结构对称轴两侧,大小相等,作用点 对称,方向反对称的荷载,对称性的利用,对称结构的受力特点:在对称荷载作用下内力是对称的, 在反对称荷载作用下内力是反对称的.,对称性的利用,例:试求图示桁架A支座反力.,C,0,对称性的利用,例:试求图示桁架各杆内力.,对称性的利用,(a),例 3 : 试对图(a)所示桁架,1)分析并确定求解整个桁架内力的路径;2)寻找只计算杆a轴力时的简捷方法,并求出杆a轴力,5.4 截面法与结点法的联合应用,(b),解:先求出支座反力,见图(b),(c),由图(c)所示截面左侧隔离体求出截面截断的三根杆的轴力后,即可依次按结点法求出所有杆的轴力。,利用截面II截开两简单桁架的连接处,取截面任一侧为隔离体,见图(c),5.4 截面法与结点法的联合应用,见图(d) ,由结点H的结点单杆EH上的轴力,再由结点E(当杆EH轴力已知时,杆a既是结点E上的结点单杆)可求出杆a的轴力。,方法1:,5.4 截面法与结点法的联合应用,(d),取截面IIII下为隔离体,见图(e),(e),方法2:,5.4 截面法与结点法的联合应用,该隔离体上有5根被截断的杆件,但有4根是交于一点A的,因此利用以铰A为矩心的力矩方程,可直接求出杆a的轴力。,将杆a轴力在B点分解,由,5.4 截面法与结点法的联合应用,(a),例4,5.4 截面法与结点法的联合应用,解:由上部结构的整体平衡条件,求的支座反力如图(b)所示。,(b),取截面II右,可求该截面上的单杆AK的轴力(当不利用结构的对称性时,这一步是解题的关键)。计算如下:,5.4 截面法与结点法的联合应用,一、桁架的外形对内力的影响,桁架的外形对桁架内力的分布有比较大的影响,在设计时应根据这些影响来选择合适的桁架外型。,平行弦桁架,三角形桁架,梯形桁架,抛物线形桁架,5.
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号