资源预览内容
第1页 / 共4页
第2页 / 共4页
第3页 / 共4页
第4页 / 共4页
亲,该文档总共4页全部预览完了,如果喜欢就下载吧!
资源描述
有理数的加法教学目的和要求:1使学生理解加法运算率在加法运算中的作用,能运用加法运算律简化加法运算。2培养学生计算能力;在算法优化过程中培养学生观察能力和思维能力。3培养学生观察、比较、归纳及运算能力。教学重点和难点:重点:有理数加法运算律。难点:灵活运用运算律使运算简便。教学工具和方法:工具:应用投影仪,投影片。 方法:分层次教学,讲授、练习相结合。(问题情境式教学法)教学过程:一、复习引入:1叙述有理数加法法则。2计算:(1)6.18 +(9.18);(2)(+5)+(-12); (3)(12)+(+5); (4)3.75 + 2.5 +(2.5); (5) +()+()+()。说明:通过练习巩固加法法则,暴露计算优化问题,引出新课。(情境导入)(问题一:宋国有个非常喜欢猴子的老人。他养了一群猴子,整天与猴子在一起,因此能够懂得猴子们的心意。因为粮食缺乏,老人想限制口粮。那天,他故意先对猴子们说:“猴子们,给你们吃橡子,早晨三颗晚上四颗,好不好?” 众猴子听了都很愤怒。老人马上改口说:“那就早上四颗晚上三颗吧,够了吗?”众猴子非常高兴,大蹦大跳起来。大家听完故事,请说说你的看法。学生回答,可能有以下情形: 1 :猴子们很笨,老人很聪明。 因为老人一天之内给的橡子数目是一样的,都是 7 个。 2 :猴子性子急,他先收到多的就高兴了。 3 :那老人为什么不早五颗晚二颗,猴子不是更高兴了? 4 :人家老人聪明的就在这里,早 5 晚 2 相差太多,会造成晚饭不饱。老人是利用了数学的加法交换律,满足了猴子们。教师归纳并引入新课。问题二:小学学过的加法运算律有哪些呢? 学生回答:加法交换律和加法结合律。 问题三:谁能用字母来表示呢? 学生回答 :加法交换律是 a+b=b+a ,加法结合律是 (a+b)+c=a+(b+c)教师归纳:我们已经知道,小学所学的有些规律,在初中由于负数的引进而变得不成立。上节课就有一个例子,谁来说说? (教室顿然安静了,显然是突然间想不起来) 教师:有关加法的规律呀。(教师及时提醒) 学生 :是“两数相加,和一定大于任一个加数。” 教师:能否举个反例? 学生 :如( 2 )( 2 ) =0 而 0 2. 教师:很好。 )二、讲授新课:1发现、总结:问题:在小学里,我们曾经学过加法的交换律、结合律,这两个运算律在有理数加法运算中也是成立的吗?你能发现什么?探索:*任意选择两个有理数(至少有一个是负数),分别填入下列和内,并比较两个算式的运算结果。 + 和 + 。*任意选择三个有理数(至少有一个是负数),分别填入下列、和很重要!内,并比较两个算式的运算结果。 ( + )+ 和 +( + )。总结:让学生总结出加法的交换律、结合律。加法交换律:两个数相加,交换加数的位置,和不变。即 a + b = b + a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。即 ( a + b )+ c = a + ( b + c )这样,多个有理数相加,可以任意交换加数的位置,也可先把其中的几个数相加,使计算简化。2例题:例1:计算:(1) (+26)+(18)+5+(16); (2) 。解 (1)原式=(26+5)+(18)+(16) = 31+(34)= (3431)= 3。(2) 原式=。从几个例题中你能发现应用运算律时,通常将哪些加数结合在一起,可以使运算简便吗?例2:10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,4,2.5,3,0.5,1.5,3,1,0,2.5。求这10 筐苹果的总重量。解:由题意得:2+(4)+2.5+3+(0.5)+1.5+3+(1)+0+(2.5) = (2+3+3)+(4)+2.5+(2.5)+(0.5)+(1)+1.5 =8+(4)= 4 。 3010 + 4 = 304 。答:10筐苹果总重量是304千克。例3:运用加法运算律计算下列各题:(1)(+66)+(12)+(+11.3)+(7.4)+(+8.1)+(2.5)(2)(+3)+(2)+(3)+(1)+(+5)+(+5)(3)(+6)+(+)+(6.25)+(+)+()+()分析:利用运算律将正、负数分别结合,然后相加,可以使运算比较简便;有分数相加时,利用运算律把分母相同的分数结合起来,将带分数拆开,计算比较简便。一定要注意不要遗漏括号;相加的若干个数中出现了相反数时,先将相反数结合起来抵消掉,或通过拆数、部分结合凑成相反数抵消掉,计算比较简便。解:(1)原式=(66 + 11.3 + 8.1)+(12)+(7.4)+(2.5)= 85.4 +(21.9)= 63.5(2)原式=(3+)+(5+)+(2+)+(1+) +(5+)+(3+)=3+5+(2)+(1)+()+()+ 5 +(3)+()=2(3)原式=(+6)+(6.25)+(+ )+()+()= 例3:10袋小麦称重时以每袋90千克为准,超过的千克数记为正数,不足的千克数记为负数,记录数据如下:+7,+5,4,+6,+4,+3,3,2,+8,+1请问总计是超过多千克还是不足多少千克?这10袋小麦的总重量是多少?分析:这是一个实际问题,教学中要启发学生将实际问题转化为数学问题,通过讨论研究,列出算式7+5+(4)+6+4+3+(3)+(2)+8+1按应用题格式求解。(3五分钟测试: 运用加法运算律计算下列各题:(1)(+66)+(12)+(+11.3)+(7.4)+(+8.1)+(2.5)(2)(+3)+(2)+(3)+(1)+(+5)+(+5)(3)(+6)+(+)+(6.25)+(+)+()+() )三、课堂小结:三个以上的有理数相加,可运用加法交换律和结合律任意改变加数的位置,简化运算。常见技巧有:(1)凑零凑整:互为相反数的两个数结合先加;和为整数的加数结合先加;(2)同号集中:按加数的正负分成两类分别结合相加,再求和;(3)同分母结合:把分母相同或容易通分的结合起来;(4)带分数拆开:计算含带分数的加法时,可将带分数的整数部分和分数部分拆开,分别结合相加。注意带分数拆开后的两部分要保持原来分数的符号。四、作业: 课本:P20:1,2。板书设计: 有理数的加法(2)1有理数加法运算律: 例1 例2 例3 五分钟测试: 教学后记:
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号