资源预览内容
第1页 / 共10页
第2页 / 共10页
第3页 / 共10页
第4页 / 共10页
第5页 / 共10页
第6页 / 共10页
第7页 / 共10页
第8页 / 共10页
第9页 / 共10页
第10页 / 共10页
亲,该文档总共10页全部预览完了,如果喜欢就下载吧!
资源描述
1122 一次函数(三),例1 小芳以200米分的速度起跑后,先匀加速跑5分钟,每分提高速度20米分,又匀速跑10分钟试写出这段时间里她跑步速度y(米分)随跑步时间x(分)变化的函数关系式,并画出图象,解:y=,例2 城有肥料200吨,城有肥料300吨,现要把这些肥料全部运往、两乡从城往、两乡运肥料费用分别为每吨20元和25元;从城往、两乡运肥料费用分别为每吨15元和24元现乡需要肥料240吨,乡需要肥料260吨怎样调运总运费最少?,若设x吨,则: 由于城有肥料200吨:,200x吨 由于乡需要240吨:,240x吨 由于乡需要260吨:,260200+x吨 那么,各运输费用为: 20x 25(200-x) 15(240-x) 24(60+x),若总运输费用为y的话,y与x关系为: y=20x+25(200-x)+ 15(240-x)+24(60+x) 化简得: y=40x+10040 (0x200),由解析式或图象都可看出,当x=0时,y值最小,为10040 因此,从城运往乡0吨,运往乡200吨;从城运往乡240吨,运往乡60吨此时总运费最少,为10040元,若城有肥料300吨,城200吨,其他条件不变,又该怎样调运呢? x吨 300-x吨 240-x吨 x-40吨 函数关系式为: y=20x+25(300-x)+15(240-x)+24(x-40) 化简:y=4x+10140 (40x300) 由解析式可知: 当x=40时 y值最小为y=440+10140=10300,因此从城运往乡40吨,运往乡260吨;从城运往乡200吨,运往乡0吨此时总运费最小值为10300吨,练习 从、两水库向甲、乙两地调水,其中甲地需水15万吨,乙地需水13万吨,、两水库各可调出水14万吨从地到甲地50千米,到乙地30千米;从地到甲地60千米,到乙地45千米设计一个调运方案使水的调运量(万吨千米)最少,解答:设总调运量为y万吨千米,水库调往甲地水x万吨,则调往乙地(14-x)万吨,水库调往甲地水(15-x)万吨,调往乙地水(x-1)万吨 由调运量与各距离的关系,可知反映y与x之间的函数为: y=50x+30(14-x)+60(15-x)+45(x-1) 化简得:y=5x+1275 (1x14) 由解析式可知:当x=1时,y值最小,为y=51+1275=1280 因此从水库调往甲地1万吨水,调往乙地13万吨水;从水库调往甲地14万吨水,调往乙地0万吨水此时调运量最小,调运量为1280万吨千米,
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号