资源预览内容
第1页 / 共27页
第2页 / 共27页
第3页 / 共27页
第4页 / 共27页
第5页 / 共27页
第6页 / 共27页
第7页 / 共27页
第8页 / 共27页
第9页 / 共27页
第10页 / 共27页
亲,该文档总共27页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
专题07 三角函数1.【2017课标3,文6】函数的最大值为()AB1CD 【答案】A【解析】由诱导公式可得:,则:,函数的最大值为.所以选A.【考点】三角函数性质【名师点睛】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征2.【2017课标II,文3】函数的最小正周期为A. B. C. D.【答案】C【考点】正弦函数周期【名师点睛】函数的性质(1).(2)周期(3)由求对称轴(4)由求增区间; 由求减区间;3.【2017课标3,文4】已知,则=()A BCD【答案】A【解析】.所以选A.【考点】二倍角正弦公式【名师点睛】应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.4.【2017山东,文4】已知,则A. B. C. D.【答案】D【考点】二倍角公式【名师点睛】(1)三角函数式的化简与求值要遵循“三看”原则,一看角,二看名,三看式子结构与特征(2)三角函数式化简与求值要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点5.【2017天津,文7】设函数,其中.若且的最小正周期大于,则(A)(B)(C)(D)【答案】【解析】试题分析:因为条件给出周期大于,再根据,因为,所以当时,成立,故选A.【考点】三角函数的性质【名师点睛】本题考查了的解析式,和三角函数的图象和性质,本题叙述方式新颖,是一道考查能力的好题,本题可以直接求解,也可代入选项,逐一考查所给选项:当时,满足题意,不合题意,B选项错误;,不合题意,C选项错误;,满足题意;当时,满足题意;,不合题意,D选项错误.本题选择A选项.6.【2017山东,文7】函数最小正周期为A. B. C. D. 【答案】C【考点】三角变换及三角函数的性质【名师点睛】求三角函数周期的方法:利用周期函数的定义利用公式:yAsin(x)和yAcos(x)的最小正周期为,ytan(x)的最小正周期为.对于形如的函数,一般先把其化为的形式再求周期.7.【2014福建,文7】将函数的图象向左平移个单位,得到函数的函数图象,则下列说法正确的是()【答案】【解析】试题分析:将函数的图象向左平移个单位,得到函数,因为,所以,选.考点:三角函数图象的变换,三角函数诱导公式,三角函数的图象和性质.【名师点睛】本题主要考查函数图像的平移及三角函数的性质,关于三角函数图像对称的结论是:已知,则图像关于直线对称的充要条件是,图像关于点对称的充要条件是.8.【2015高考福建,文6】若,且为第四象限角,则的值等于( )A B C D【答案】D【考点定位】同角三角函数基本关系式【名师点睛】本题考查同角三角函数基本关系式,在、三个值之间,知其中的一个可以求剩余两个,但是要注意判断角的象限,从而决定正负符号的取舍,属于基础题9.(2014课标全国,文7)在函数ycos|2x|,y|cos x|,中,最小正周期为的所有函数为()A B C D答案:A解析:由于ycos|2x|cos 2x,所以该函数的周期为;由函数y|cos x|的图象易知其周期为;函数的周期为;函数的周期为,故最小正周期为的函数是,故选A.名师点睛:本题考查余弦函数、正切函数的性质,函数的周期,注意区别函数与的图象与性质,容易题.10.【2014天津,文8】已知函数在曲线与直线的交点中,若相邻交点距离的最小值为,则的最小正周期为()A. B. C. D.【答案】C考点:三角函数性质【名师点睛】本题考查三角函数图象与性质,本题属于基础题,研究三角函数图象与性质,要把函数的解析式化为标准形式,如:,这个过程经常使用降幂公式和辅助角公式,然后借助正弦函数的图像与性质去解决问题,本题需要借助已知条件求出,然后计算周期.11.【2015高考新课标1,文8】函数的部分图像如图所示,则的单调递减区间为()(A)(B)(C)(D)【答案】D【解析】由五点作图知,解得,所以,令,解得,故单调减区间为(,),故选D.【考点定位】三角函数图像与性质【名师点睛】本题考查函数的图像与性质,先利用五点作图法列出关于方程,求出,或利用利用图像先求出周期,用周期公式求出,利用特殊点求出,再利用复合函数单调性求其单调递减区间,是中档题,正确求使解题的关键.12.【2016高考新课标2文数】函数的部分图像如图所示,则()(A)(B)(C)(D)【答案】A考点:三角函数图像的性质【名师点睛】根据图像求解析式问题的一般方法是:先根据函数图像的最高点、最低点确定A,h的值,函数的周期确定的值,再根据函数图像上的一个特殊点确定值13.【2014年.浙江卷.文4】为了得到函数的图象,可以将函数的图象( )A.向右平移个单位长 B.向右平移个单位长 C.向左平移个单位长 D.向左平移个单位长 【答案】A【解析】试题分析:因为,所以将函数的图象向右平移个单位长得函数,即得函数的图象,选A.考点:三角函数的图象的平移变换,公式的运用,容易题.【名师点睛】三角函数图象变换法:由函数ysin x的图象通过变换得到yAsin(x)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”平移变换和伸缩变换都是针对x而言,即x本身加减多少值,而不是依赖于x加减多少值14.【2016高考新课标2文数】函数的最大值为()(A)4(B)5(C)6(D)7【答案】B考点:正弦函数的性质、二次函数的性质.【名师点睛】求解本题易出现的错误是认为当时,函数取得最大值.2016高考新课标文数若,则( )(A)(B)(C)(D)【答案】D【解析】试题分析:考点:1、同角三角函数间的基本关系;2、二倍角【方法点拨】三角函数求值:“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;“给值求值”关键是目标明确,建立已知和所求之间的联系15. 【2014四川,文3】为了得到函数的图象,只需把函数的图象上所有的点()A向左平行移动1个单位长度B向右平行移动1个单位长度C向左平行移动个单位长度D向右平行移动个单位长度【答案】A【解析】试题分析:只需把的图象上所有的点向左平移1个单位,便得函数的图象.选A.【考点定位】三角函数图象的变换.【名师点睛】本题考查三角函数图象的变换,解答本题的关键,是明确平移的方向和单位数,这取决于加或减的数据.本题属于基础题,是教科书例题的简单改造,易错点在于平移的方向记混.16.【2015高考山东,文4】要得到函数的图象,只需要将函数的图象()(A)向左平移个单位(B)向右平移个单位(C)向左平移个单位(D)向右平移个单位【答案】【考点定位】三角函数图象的变换.【名师点睛】本题考查三角函数图象的变换,解答本题的关键,是明确平移的方向和单位数,这取决于加或减的数据.本题属于基础题,是教科书例题的简单改造,易错点在于平移的方向记混.17.【2016高考天津文数】已知函数,.若在区间内没有零点,则的取值范围是()(A)(B)(C)(D)【答案】D【解析】试题分析:,所以,因此,选D.考点:解简单三角方程【名师点睛】对于三角函数来说,常常是先化为yAsin(x)k的形式,再利用三角函数的性质求解三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的体现;降次是一种三角变换的常用技巧,要灵活运用降次公式18.【2014高考陕西版文第2题】函数的最小正周期是()【答案】考点:同角的三角函数关系式,容易题.【名师点晴】本题主要考查的是余弦函数的最小正周期,属于容易题.解题时只要正确记忆正弦函数、预先函数的最小正周期周期公式,就不会出现错误19. 【2015高考陕西,文6】“”是“”的()A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要【答案】【解析】,所以或,故答案选.【考点定位】1.恒等变换;2.命题的充分必要性.【名师点睛】1.本题考查三角恒等变换和命题的充分必要性,采用二倍角公式展开,求出或.2.本题属于基础题,高考常考题型.20.【2016高考新课标1文数】若将函数y=2sin (2x+)的图像向右平移个周期后,所得图像对应的函数为()(A)y=2sin(2x+) (B)y=2sin(2x+) (C)y=2sin(2x) (D)y=2sin(2x)【答案】D【解析】试题分析:函数的周期为,将函数的图像向右平移个周期即个单位,所得函数为,故选D.考点:三角函数图像的平移【名师点睛】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减“,二是平移多少个单位是对x而言的,不用忘记乘以系数.21.【2017课标II,文13】函数的最大值为 . 【答案】【考点】三角函数有界性【名师点睛】通过配角公式把三角函数化为的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征一般可利用求最值.22.【2017江苏,5】若则 .【答案】【解析】故答案为【考点】两角和正切公式【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般可以适当变换已知式,求得另外函数式的值,以备应用;变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.23.【2017课标1,文15】已知,tan =2,则=_【答案】【解析】试题分析:由得又所以因为所以因为所以【考点】三角函数求值【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异一般可以适当变换已知式,求得另外函数式的值,以备应用;变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的(3)给
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号