资源预览内容
第1页 / 共37页
第2页 / 共37页
亲,该文档总共37页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
(山东省德州市2019届高三期末联考数学(理科)试题)9.如图所示,正方形的四个顶点,及抛物线和,若将一个质点随机投入正方形中,则质点落在图中阴影区域的概率是( )A. B. C. D. 【答案】B【解析】【分析】利用几何槪型的概率公式,求出对应的图形的面积,利用面积比即可得到结论【详解】A(1,1),B(1,1),C(1,1),D(1,1),正方体的ABCD的面积S224,根据积分的几何意义以及抛物线的对称性可知阴影部分的面积:S21dx2(x3)2(1)02,则由几何槪型的概率公式可得质点落在图中阴影区域的概率是故选:B【点睛】本题主要考查几何槪型的概率的计算,利用积分求出阴影部分的面积是解决本题的关键(山东省潍坊市2019届高三上学期期末测试数学(理科)试题)9.四色猜想是世界三大数学猜想之一,1976年数学家阿佩尔与哈肯证明,称为四色定理.其内容是:“任意一张平面地图只用四种颜色就能使具有共同边界的国家涂上不同的颜色.”用数学语言表示为“将平面任意地细分为不相重叠的区域,每一个区域总可以用,四个数字之一标记,而不会使相邻的两个区域得到相同的数字.”如图,网格纸上小正方形的边长为,粗实线围城的各区域上分别标有数字,的四色地图符合四色定理,区域和区域标记的数字丢失.若在该四色地图上随机取一点,则恰好取在标记为的区域的概率所有可能值中,最大的是( )A. B. C. D. 【答案】C【解析】【分析】令B为1,结合古典概型计算公式,得到概率值,即可。【详解】A,B只能有一个可能为1,题目求最大,令B为1,则总数有30个,1号有10个,则概率为,故选C。【点睛】本道题考查了古典概型计算公式,难度较小。(湖北省2019届高三1月联考测试数学(理)试题)7.如图,边长为的正六边形内有六个半径相同的小圆,这六个小圆分别与正六边形的一边相切于该边的中点,且相邻的两个小圆互相外切,则在正六边形内任取一点,该点恰好取自阴影部分的概率为( )A. B. C. D. 【答案】C【解析】【分析】分别求出正六边形和阴影部分的面积,作商即可【详解】如图所示,边长为a的正六边形,则OAOBABa,设小圆的圆心为O,则OCOA,OCa,OCa,OOa,ODa,S阴影12aa(a)2()a2,S正六边形a2,点恰好取自阴影部分的概率P,故选:C【点睛】本题考查了几何概型问题,考查特殊图形面积的求法,是一道常规题(辽宁省实验中学、大连八中、大连二十四中、鞍山一中、东北育才学校2019届高三上学期期末考试数学(文)试题)13.在区间上随机取一个实数,则事件“”发生的概率是_【答案】【解析】【分析】用辅助角公式化简题目所给不等式,解三角不等式求得点的取值范围,利用几何概型的概率公式求得所求的概率.【详解】由得,故,解得,根据几何概型概率计算公式有概率为.【点睛】本小题主要考查三角不等式的解法,考查三角函数辅助角公式,考查几何概型的计算,属于基础题.(山东省烟台市2018届高三下学期高考诊断性测试数学(文)试题)4.七巧板是我国古代劳动人民的发明之一,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率是A. B. C. D. 【答案】B【解析】不妨设小正方形的边长为1,则两个等腰直角三角形的边长为,一个等腰直角三角形的边长为,两个等腰直角三角形的边长为2,2,即最大正方形边长为P=,选B.(四川省绵阳市2019届高三第二次(1月)诊断性考试数学理试题)11.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾某嘉宾突发奇想,设计两种乘车方案方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )A. P1P2 B. P1P2 C. P1+P2 D. P1P2【答案】C【解析】【分析】将三辆车的出车可能顺序一一列出,找出符合条件的即可.【详解】三辆车的出车顺序可能为:123、132、213、231、312、321方案一坐车可能:132、213、231,所以,P1;方案二坐车可能:312、321,所以,P1;所以P1+P2故选C.【点睛】本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题.(四川省绵阳市2019届高三第二次(1月)诊断性考试数学理试题)9.在边长为2的等边三角形内随机取一点,该点到三角形三个顶点距离均大于1的概率是( )A. B. C. D. 【答案】A【解析】【分析】先求出满足条件的正三角形ABC的面积,再求出满足条件正三角形ABC内的点到三角形的顶点A、B、C的距离均不小于1的图形的面积,然后代入几何概型公式即可得到答案【详解】满足条件的正三角形ABC如下图所示:其中正三角形ABC的面积S三角形4满足到正三角形ABC的顶点A、B、C的距离至少有一个小于1的平面区域如图中阴影部分所示,其加起来是一个半径为1的半圆,则S阴影则使取到的点到三个顶点A、B、C的距离都大于1的概率是P故选:A【点睛】本题考查几何概型概率公式,涉及三角形的面积公式、扇形的面积公式,属于基础题(湖南省长沙市2019届高三上学期统一检测文科数学试题)4.某人午觉醒来,发现表停了,他打开收音机,想听电台的整点报时,则他等待的时间不多于5分钟的概率为( )A. B. C. D. 【答案】B【解析】【分析】由于电台的整点报时之间的间隔60分,等待的时间不多于5分钟,根据几何概型的概率公式可求【详解】设电台的整点报时之间某刻的时间x,由题意可得,0x60,等待的时间不多于5分钟的概率为P,故选:B【点睛】本题考查几何概型,先要判断概率模型,对于几何概型,它的结果要通过长度、面积或体积之比来得到,属于基础题(河北省张家口市2019届高三上学期期末考试数学(文)试题)10.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的,弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图),如果大正方形的面积为,直角三角形中较小的锐角为,在大正方形内取一点,则此点取自中间小正方形的概率为()A. B. C. D. 【答案】A【解析】【分析】先根据已知条件得到小正方形的边长,然后利用几何概型的概率公式即可得到答案.【详解】大正方形的面积为,则正方形的边长为,即,则直角三角形中较短的边为较长边为=4,则中间小正方形的边长为4故点取自中间小正方形的概率为.故选:A.【点睛】本题考查“面积型”的几何概型,解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关键是计算事件的总面积以及所求事件的面积;几何概型问题还有以下几点容易造成失分,(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.(广东省肇庆市2019届高三第二次(1月)统一检测数学文试题)13.某频率分布表(样本容量为)不小心被损坏了一部分,只记得样本中数据在内的频率为,则估计样本在的数据个数之和是_分组频数【答案】【解析】【分析】根据题目所给样本在内的频率,计算得内数据个数,结合表格数据计算得内的数据个数之和.【详解】由于样本容量为,故在内的频数为,故在内的数据个数之和为.【点睛】本小题主要考查样本、频数与频率之间的关系,考查分析和解决问题的能力,属于基础题.(广东省肇庆市2019届高三第二次(1月)统一检测数学文试题)7.太极是中国古代的哲学术语,意为派生万物的本源.太极图是以黑白两个鱼形纹组成的圆形图案,俗称阴阳鱼.太极图形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理.太极图形展现了一种互相转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆被的图象分割为两个对称的鱼形图案,图中的两个一黑一白的小圆通常称为“鱼眼”,已知小圆的半径均为,现在大圆内随机投放一点,则此点投放到“鱼眼”部分的概率为( )A. B. C. D. 【答案】B【解析】【分析】先求得的周期,得出大圆的半径,然后利用几何概型求得“点投放到“鱼眼”部分的概率”.【详解】函数的最小正周期为,故大圆的直径为,半径为,故“点投放到“鱼眼”部分的概率”为.【点睛】本小题主要考查正弦型函数的周期性,考查利用几何概型面积计算公式计算概率,属于基础题.(广东省清远市2019届高三上学期期末考试数学(理)试题)6.如图,矩形中曲线的方程分别是,在矩形内随机取一点,则此点取自阴影部分的概率为( )A. B. C. D. 【答案】A【解析】【分析】利用定积分计算得阴影部分的面积,在利用几何概型概率计算公式求得所求的概率.【详解】依题意的阴影部分的面积,根据用几何概型概率计算公式有所求概率为,故选A.【点睛】本小题主要考查定积分的计算,考查几何概型的识别以及其概率计算公式,属于基础题.(广东省清远市2019届高三上学期期末考试数学(理)试题)5.从应届高中生中选拔飞行员,已知这批学生体型合格的概率为,视力合格的概率为,假设各项标准互不影响,从中任选一名学生,则该生恰有一项合格的概率为( )A. B. C. D. 【答案】D【解析】【分析】先求得两项都合格以及两项都不合格的概率,用减去这两个概率求得恰有一项合格的概率.【详解】两项都合格的概率为,两项都不合格的概率为,故恰有一项合格的概率为.故选D.【点睛】本小题主要考查相互独立事件的概率计算公式,考查利用补集的思想求事件的概率,属于基础题.(广东省揭阳市2018-2019学年高中毕业班学业水平考试文科数学试题)15.如图,圆柱O1 O2 内接于球O,且圆柱的高等于球O的半径,则从球O内任取一点,此点取自圆柱O1 O2 的概率为_; 【答案】【解析】【分析】设出球的半径,利用勾股定理求得圆柱的底面半径,分别计算圆柱和球的体积,然后利用几何概型的概率计算公式,求得所求的概率.【详解】设球的半径为,依题意可知,圆柱底面半径,故圆柱的体积为,而球的体积为,故所求概率为.【点睛】本小题主要考查有关球的内接几何体的问题,考查体积型的集合概型概率计算,属于基础题.对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间).有关球内接几何体的问题,主要是构造直角三角形,利用勾股定理来计算长度
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号