资源预览内容
第1页 / 共14页
第2页 / 共14页
第3页 / 共14页
第4页 / 共14页
第5页 / 共14页
第6页 / 共14页
第7页 / 共14页
第8页 / 共14页
第9页 / 共14页
第10页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
n 1.火法冶金、湿法冶金和电冶金的主要特点是什么?A利用高温加热从矿石中提取金属或其化合物的方法称为火法冶金。其技术原理是将矿石或原材料加热到熔点以上,使之熔化为液态,经过与熔剂的冶炼及物理化学反应再冷凝为固体而提取金属原材料,并通过对原料精炼达到提纯及合金化,以制备高质量的锭坯。B湿法冶金是指利用一些溶剂的化学作用,在水溶液或非水溶液中进行包括氧化、还原、中和、水解和络合等反应,对原料、中间产物或二次再生资源中的金属进行提取和分离的冶金过程。C利用电能从矿石或其他原料中提取、回收或精炼金属的冶金过程称为电冶金。n 2.简述火法冶金和湿法冶金的基本工艺过程。A火法冶金的基本过程:矿石准备(选矿、焙烧、球化或烧结等工序处理)冶炼(矿石在高温下用气体或固体还原剂还原出金属单体)精炼(去除杂质元素,提高纯度及合金化)B湿法冶金的基本过程:浸取(选择合适的溶剂溶解金属到溶液)固/液分离(过滤、洗涤及离心分离)、溶液的富集(化学沉淀、离子沉淀、溶剂萃取和膜分离)和从溶液中提取金属或化合物(电解、化学置换和加压氢还原)n 3.电解精炼和电解提取有何不同?在电冶金中,应用水溶液电解精炼金属称为电解精炼或可溶阳极电解,而应用水溶液电解从浸取液中提取金属称为电解提取或不溶阳极电解。n 1.单晶材料制备中提拉法的原理。()要生长的结晶物质材料在坩埚中熔化而不分解,不与周围环境起反应。()籽晶预热后旋转着下降与熔体液面接触,同时旋转籽品,这一方面是为了获得热对称性,另一方面也搅拌了熔体。待籽晶微熔后再缓慢向上提拉。()降低坩埚温度或熔体温度梯度,不断提拉,使籽晶直径变大(即放肩阶段),然后保持合适的温度梯度和提拉速度使晶体直径不变(即等径生长阶段)。()当晶体达到所需长度后,在拉速不变的情况下升高熔体的温度或在温度不变的情况下加快拉速使晶体脱离熔体液面。()对晶体进行退火处理,以提高晶体均匀性和消除可能存在的内部应力(晶体退火的目的也在于此)。n 2.单晶材料制备中高温溶液法基本原理。 水中难溶,而且又不适合用熔体法生长晶体的物质,一般采用高温()溶液法生长其晶体。该类方法十分类似于常温溶液法,主要区别是高温溶液生长温度高,体系中的相关系更复杂。(1)高温溶液法是结晶物质在高温条件下溶于适当的助熔剂中形成溶液,在其过饱和的情况下生长为单晶的方法。因此,其基本原理与常温溶液法相同。但助熔剂的选择和溶液相关系的确定是高温溶液法晶体生长的先决条件。(2)高温溶液法中没有一种助熔剂像常温溶液中的水似的,能够溶解多种物质并适合其晶体生长。因此,助熔剂的选择就显得十分重要。n 1.复合铸造原理和方法。 复合铸造是指将两种或两种以上具有不同性能的金属材料铸造成为一个完整的铸件,使铸件的不同部位具有不同的性能,以满足使用的要求。通常是一种合金具有较高的力学性能,而另一种或几种合金则具有抗磨、耐蚀、耐热等特殊 使用性能。镶铸工艺:将一种或两种金属预制成一定形状的镶块,镶铸到另一种金属液体内,得到兼有两种或多种特性的双(多)金属铸件。 目前生产的铸件有:高压阀门、高压柱塞泵等耐磨耐蚀耐热关键性金属零部件、硬质合金导卫板等。 重力复合铸造:将两种或多种不同成分、性能的铸造合金分别熔化后,采用特定的浇注方式或浇注系统,在重力条件下先后浇入同一铸型内,获得复合铸件的工艺。重力复合铸造生产的铸件有:挖掘机斗齿、双金属锤头保险柜材料等。 离心复合铸造:离心复合铸造是将两种或多种不同成分、性能的铸造合金分别熔化后,先后浇人离心机旋转的模筒内,获得复合铸件的工艺。离心复合铸造生产的铸件有:轧辊辊环,陶瓷内衬复合铸铁等。 n 2.实现连续挤压的条件 。(1) 不需借助挤压轴和挤压垫片的直接作用,即可对坯料施加足够的力以实现挤压变形;(2) 挤压筒应具有无限连续工作长度,以便使用无限长的坯料。n 3.Conform连续挤压特点。优点:(1)由于挤压型腔与坯料之间的摩擦大部分得到有效利用,挤压变形的能耗大大降低。常规正挤压法中,用于克服挤压筒壁上的摩擦所消耗的能量可达整个挤压变形能耗的30以上,有的甚至可达50。据计算,在其它条件基本相同的条件下,Conform连续挤压可比常规正挤压的能耗降低30以上。(2)可以省略常规热挤压中坯料的加热工序,节省加热设备投资,通过有效利用摩擦发热而节省能耗。Conform连续挤压时,作用于坯料表面上的摩擦所产生的摩擦热,连同塑性变形热,可以使挤压坯料上升到400-500(铝及铝合金)甚至更高(铜及铜合金),以至于坯料不需加热或采用较低温度预热即可实现热挤压,从而大大节省挤压生产的热电费用。(3)可以实现真正意义上的无间断连续生产,获得长度达到数千米乃至数万米的成卷制品,如小尺寸薄壁铝合金盘管、铝包钢导线等。 显著减少间隙性非生产时间,提高劳动生产率;对于细小断面尺寸制品,可以大大简化生产工艺、缩短生产周期;大幅度地减少挤压压余、切头尾等几何废料,可将挤压制品的成品率提高到90以上,甚至可高达95-98.5;大大提高制品沿长度方向组织、性能的均匀性。(4)具有较为广泛的适用范围。从材料种类来看,Coform连续挤压法已成功地应用于铝及软铝合金、铜及部分铜合金的挤压生产;坯料的形状可以是杆状、颗粒状,也可以是熔融状态;制品种类包括管材、线材、型材,以及以铝包钢线为典型代表的包覆材料。(5)设备紧凑,占地面积小,设备造价及基建费用较低。缺点:(1)对坯料预处理(除氧化皮、清洗、干燥等)的要求高。生产实际表明,线杆进入挤压轮前的表面清洁程度,直接影响挤压制品的质量,严重时甚至会产生夹杂、气孔、针眼、裂纹、沿焊缝破裂等缺陷。(2)尽管采用扩展模挤压等方法,Conform连续挤压法也可生产断面尺寸较大、形状较为复杂的实心或空心型材,但不如生产小断面型材时的优势大。这主要是由于坯料尺寸与挤压速度的限制,生产大断面型材时Conform连续挤压单台设备产量远低于常规正挤压法(3)虽然如前所述Conform连续挤压制品沿长度方向的组织、性能均匀性大大提高,但由于坯料的预处理效果、难以获得大挤压比等原因,采用该法生产的空心制品在焊缝质量、耐高压性能等方面不如常规正挤压-拉拔法生产的制品好。这一缺点限制了连续挤压生产对于某些本应具有很大优势的产品的应用。(4)挤压轮凹槽表面、槽封块、堵头等始终处于高温高摩擦状态,因而对工模具材料的耐磨耐热性能要求高。(5)由于设备结构与挤压工作原理上的特点,工模具更换比常规挤压困难。(6)对设备液压系统、控制系统的要求高由上所述可知,Conform连续挤压法具有许多常规挤压法所不具有的优点,尤其适合于热挤压温度较低(如软铝合金)、小断面尺寸制品的连续成形。n 1.连续铸轧及其基本条件?(1)直接将金属熔体“轧制”成半成品带坯或成品带材的工艺称为连续铸轧。(2)条件:A浇汁系统预热温度铸轧浇注系统包括控制金属液面高度的前箱、横浇道、供料嘴底座和供料嘴四部分.作为液体金属流过的通道,必须具备良好的保温性能,使液体金属不过多地散热,保持铸轧的正常进行整个浇注系统内,不应有潮气、油膜、氧化渣以及其他杂物存在。经整体装配并调试好后,入炉进行预热。预热温度为300左右,保温4h以上。浇注系统如果预热不好,液体金属失热过多,不能进行正常铸轧,即使勉强开了头,也会因供料嘴内由凝块而中断铸轧。因此浇注系统预热温度是铸轧的基本工艺参数。B金属的液面高度整个浇注系统是一个连通器。前箱内液面水平高度就决定着供料嘴出口处液体金属压力的大小。若液面低,供应金属的压力过小,则铸轧板面易于产生孔洞;若液面过高,金属静压力过大,或在铸轧扳面上出现被冲破的氧化皮,影响板面质量;或使液体金属进入辊隙,造成铸轧中断。n 1.名称:喷丸强化、离子注入、离子束溅射、离子镀、等离子渗氮。喷丸强化:是弹丸流不断冲击金属材料表层并使表层材料发生循环塑性变形, 从而形成变形强化层的过程离子注入:把气体或金属元素蒸气,通人电离室电离形成正离子,经高压电场加速,使离子获得很高速度后打人固体中的物理过程.离子束溅射:离子枪产生一定束强度、一定能量的离子流,以一定的入射角度轰击靶材并溅射出其表层的原子,后者沉积到衬底表面形成薄膜。离子镀:电子束蒸发法提供沉积的源物质,同时以衬底作为阴极、整个真空室作为阳极组成一个类似于二极溅射装置的系统。在沉积前和沉积中采用高能量的离子流对衬底和薄膜表面进行溅射处理。等离子渗氮:利用低真空稀薄气体辉光放电产生的离子束轰击金属或合金表面,使工件加热到所需温度,在金属表面渗入一种或几种化学元素并向其内部扩散,改变表层的化学成分与组织结构,达到强化目的。n 2.化学气相沉积原理及其应用。(1) 原理:气相元素或化合物被输运到基体(衬底)表面附近,在一定条件下使它们发生化学反应,并在基体表面发生固相反应成膜;化学反应大致可分为分解反应(热分解)、还原反应、氧化反应、水解反应、聚合反应和输运反应等;使化学反应激活的方法包括加热、高频电压、激光、X射线、等离子体、电子碰撞和催化等。(2) 应用:耐磨镀层:以氮化物、氧化物、碳化物和硼化物为主,主要应用于金属切削刀具。在切削应刷中,镀层性能上主要包括硬度、化学稳定性、耐磨性、低摩擦系数、高导热与热稳定性和与基体酬结合强度。这类镀层主要有TiN、TiC、TaC、HfN、Al2O3、TiB2等,都已得到应用;摩擦学镀层:降低接触的滑动面或转动面之间的摩擦系数,减少粘着、摩擦或其他原因造成的磨损。这类镀层主要是难熔化合物。在镀层性能上主要是硬度、弹性模量、断裂韧性、与基体的结合强度、晶粒尺寸等。高温应用镀层:镀层的热稳定性。高分解温度的难熔化合物,比较适合予高温环境应用。涉及到反应性气氛,就须考虑它的氧化和化学稳定性,可选用难熔化合物和氧化物的混合物。此外有相容的热膨胀特性和强度,如环境有经常性的热震,选择难熔金属硅化物和过渡金属铝化物。这类应用包括火箭喷嘴、加力燃烧室部件、返回大气层的锥体、高温燃气轮机热交换部件和陶瓷汽车发动机缸套、活塞等。开发新材料:陶瓷材料中增韧的化合物晶须可用CVD来生产,已有的Si3N4、TiC、Al2O3、TiN、Cr3C2、SiC、ZrC、ZrO2等。n 3.物理气相沉积原理及其应用。(1) 原理:利用某种物理过程,如物质的热蒸发或在受到粒子轰击时物质表面原子的溅射等现象,实现物质原子从源物质到薄膜的可控转移的过程。1)镀料的气化;使镀料蒸发、升华或被溅射,也就是通过镀料的气化源。2)镀料原子、分子或离子在相对较低的气体压力环境的迁移;由气化源供出原子、分子或离子经过碰撞后,产生多种反应。3)镀料原子、分子或离子在基体上不发生化学反应沉积。(2) 应用:电子束物理气相沉积被广泛应用于航空、航天、船舶和冶金等工业领域。而离子镀广泛用于机械、电子、航空、航天、轻工、光学和建筑等部门,用以制备耐磨、耐蚀、耐热、超硬、导电、磁性和光电转换等镀层。n 4.列举激光表面处理工艺。(1) 激光淬火:高能激光束表面快速加热,通过固态自激冷却淬火(固态相变重结晶),改变表面组织结构而产生强化效果。(2) 激光熔凝:利用比激光淬火更高的激光能量,通过表面熔化及熔化薄层快速凝固(重熔再结晶),改变表面组织结构而产生强化效果。(3) 激光上釉:处理工艺参数与熔凝有差别,激光能量密度很高,快速扫描时,表面熔化薄层(110微米)与基体形成陡峭的温度梯度,急冷(通常冷却速度超过熔层金属的临界冷却速度)使表面熔层形成非晶态组织。(4) 激光合金化:材料的表面加入其他合金成分(预置涂层或吹送粉末) ,高能激
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号