资源预览内容
第1页 / 共12页
第2页 / 共12页
第3页 / 共12页
第4页 / 共12页
第5页 / 共12页
第6页 / 共12页
第7页 / 共12页
第8页 / 共12页
第9页 / 共12页
第10页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
学案47双曲线导学目标: 1.了解双曲线的定义、几何图形和标准方程,知道它们的简单几何性质.2.理解数形结合的思想自主梳理1双曲线的概念平面内到两个定点F1、F2(F1F22c0)的距离的差的绝对值等于常数2a(2a0,c0;(1)当_时,P点的轨迹是_;(2)当_时,P点的轨迹是_;(3)当_时,P点不存在2双曲线的标准方程和几何性质标准方程1(a0,b0)1(a0,b0)图形性质范围xa或xa,yRxR,ya或ya对称性对称轴:坐标轴对称轴:坐标轴对称中心:原点对称中心:原点顶点顶点坐标:A1(a,0),A2(a,0)顶点坐标:A1(0,a),A2(0,a)渐近线yxyx离心率e,e(1,),其中c实虚轴线段A1A2叫做双曲线的实轴,它的长A1A22a;线段B1B2叫做双曲线的虚轴,它的长B1B22b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a、b、c的关系c2a2b2 (ca0,cb0)3.实轴长和虚轴长相等的双曲线为_,其渐近线方程为_,离心率e为_自我检测1(2011湖南改编)设双曲线1(a0)的渐近线方程为3x2y0,则a的值为_2已知双曲线1 (b0)的左、右焦点分别为F1、F2,其中一条渐近线方程为yx,点P(,y0)在该双曲线上,则_.3(2010安徽改编)若双曲线方程为x22y21,则它的右焦点坐标为_4(2011江西)若双曲线1的离心率e2,则m_.5已知A(1,4),F是双曲线1的左焦点,P是双曲线右支上的动点,求PFPA的最小值探究点一双曲线的定义及应用例1已知定点A(0,7),B(0,7),C(12,2),以C为一个焦点作过A,B的椭圆,求另一焦点F的轨迹方程变式迁移1已知动圆M与圆C1:(x4)2y22外切,与圆C2:(x4)2y22内切,求动圆圆心M的轨迹方程探究点二求双曲线的标准方程例2已知双曲线的一条渐近线方程是x2y0,且过点P(4,3),求双曲线的标准方程变式迁移2(2010安庆模拟)已知双曲线与椭圆1的焦点相同,且它们的离心率之和等于,则双曲线的方程为_探究点三双曲线几何性质的应用例3已知双曲线的方程是16x29y2144.(1)求此双曲线的焦点坐标、离心率和渐近线方程;(2)设F1和F2是双曲线的左、右焦点,点P在双曲线上,且PF1PF232,求F1PF2的大小变式迁移3已知双曲线C:y21.(1)求双曲线C的渐近线方程;(2)已知M点坐标为(0,1),设P是双曲线C上的点,Q是点P关于原点的对称点记,求的取值范围方程思想例(14分)过双曲线1的右焦点F2且倾斜角为30的直线交双曲线于A、B两点,O为坐标原点,F1为左焦点(1)求AB;(2)求AOB的面积;(3)求证:AF2BF2AF1BF1.多角度审题(1)要求弦长AB需要A、B两点坐标或设而不求利用弦长公式,这就需要先求直线AB;(2)在(1)的基础上只要求点到直线的距离;(3)要充分联想到A、B两点在双曲线上这个条件【答题模板】(1)解由双曲线的方程得a,b,c3,F1(3,0),F2(3,0)直线AB的方程为y(x3)设A(x1,y1),B(x2,y2),由得5x26x270.4分x1x2,x1x2,AB|x1x2|.8分(2)解直线AB的方程变形为x3y30.原点O到直线AB的距离为d.SAOBABd.10分(3)证明如图,由双曲线的定义得AF2AF12,BF1BF22,AF2AF1BF1BF2,即AF2BF2AF1BF1.14分【突破思维障碍】本题利用方程的思想,把过点A的直线方程与双曲线方程联立,从而转化为关于x的一元二次方程,利用韦达定理求解,这种思想在解析几何中经常用到【易错点剖析】在直线和双曲线相交的情况下解题时易忽视消元后的一元二次方程的判别式0,而导致错解1区分双曲线中的a,b,c大小关系与椭圆中a,b,c的大小关系,在椭圆中a2b2c2,而在双曲线中c2a2b2;双曲线的离心率大于1,而椭圆的离心率e(0,1)2双曲线1 (a0,b0)的渐近线方程是yx,1 (a0,b0)的渐近线方程是yx.3双曲线标准方程的求法:(1)定义法,根据题目的条件,判断是否满足双曲线的定义,若满足,求出相应的a、b、c,即可求得方程(2)待定系数法,其步骤是:定位:确定双曲线的焦点在哪个坐标轴上;设方程:根据焦点的位置设出相应的双曲线方程;定值:根据题目条件确定相关的系数(满分:90分)一、填空题(每小题6分,共48分)1已知M(2,0)、N(2,0),PMPN3,则动点P的轨迹是_2设点P在双曲线1上,若F1、F2为双曲线的两个焦点,且PF1PF213,则F1PF2的周长为_3(2011苏州模拟)过双曲线1 (a0,b0)的右焦点F作圆x2y2a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率为_4双曲线1的左焦点为F1,左、右顶点分别为A1、A2,P是双曲线右支上的一点,则分别以PF1和A1A2为直径的两圆的位置关系是_5(2010辽宁改编)设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为_6(2010福建)若双曲线1(b0)的渐近线方程为yx,则b_.7(2011大纲全国)已知F1、F2分别为双曲线C:1的左、右焦点,点AC,点M的坐标为(2,0),AM为F1AF2的平分线,则AF2_.8(2011南通模拟)已知圆C:x2y26x4y80.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为_二、解答题(共42分)9(14分)根据下列条件,求双曲线方程:(1)与双曲线1有共同的渐近线,且经过点(3,2);(2)与双曲线1有公共焦点,且过点(3,2)10(14分)已知离心率为的椭圆的中心在原点,焦点在x轴上,双曲线以椭圆的长轴为实轴,短轴为虚轴,且焦距为2.(1)求椭圆及双曲线的方程;(2)设椭圆的左、右顶点分别为A、B,在第二象限内取双曲线上一点P,连结BP交椭圆于点M,连结PA并延长交椭圆于点N,若,求四边形ANBM的面积11(14分)(2010四川)已知定点A(1,0),F(2,0),定直线l:x,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N.(1)求E的方程;(2)试判断以线段MN为直径的圆是否过点F,并说明理由学案47双曲线答案自主梳理1双曲线焦点焦距(1)ac3.等轴双曲线yx自我检测12解析渐近线方程可化为yx.双曲线的焦点在x轴上,()2,解得a2.由题意知a0,a2.203(,0)448解析因为a216,b2m,所以a4,b,c216m,所以e2,解得m48.5解设双曲线的右焦点为F1,则由双曲线的定义可知PF2aPF14PF1,PFPA4PF1PA.当满足PF1PA最小时,PFPA最小由双曲线的图象可知当点A、P、F1共线时,满足PF1PA最小,易求得最小值为AF15,故所求最小值为9.课堂活动区例1解题导引求曲线的轨迹方程时,应尽量地利用几何条件探求轨迹的曲线类型,从而再用待定系数法求出轨迹的方程,这样可以减少运算量,提高解题速度与质量在运用双曲线的定义时,应特别注意定义中的条件“差的绝对值”,弄清所求轨迹是整条双曲线,还是双曲线的一支,若是一支,是哪一支,以确保轨迹的纯粹性和完备性解设F(x,y)为轨迹上的任意一点,因为A,B两点在以C,F为焦点的椭圆上,所以FACA2a,FBCB2a(其中a表示椭圆的长半轴)所以FACAFBCB.所以FAFBCBCA2.所以FAFB2.由双曲线的定义知,F点在以A,B为焦点,2为实轴长的双曲线的下半支上所以点F的轨迹方程是y21 (y1)变式迁移1解设动圆M的半径为r,则由已知得,MC1r,MC2r,MC1MC22,又C1(4,0),C2(4,0),C1C28.20时,焦点在x轴上;当0时,焦点在y轴上解方法一双曲线的一条渐近线方程为x2y0,当x4时,y2yp3,双曲线的焦点在y轴上从而有,b2a.设双曲线方程为1,由于点P(4,3)在此双曲线上,1,解得a25.双曲线方程为1.方法二双曲线的一条渐近线方程为x2y0,即y0,双曲线的渐近线方程为y20.设双曲线方程为y2 (0),双曲线过点P(4,3),32,即5.所求双曲线方程为y25,即1.变式迁移
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号