资源预览内容
第1页 / 共18页
第2页 / 共18页
第3页 / 共18页
第4页 / 共18页
第5页 / 共18页
第6页 / 共18页
第7页 / 共18页
第8页 / 共18页
第9页 / 共18页
第10页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
*.1、(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC求AEB的大小;(2)如图2,OAB固定不动,保持OCD的形状和大小不变,将OCD绕着点O旋转(OAB和OCD不能重叠),求AEB的大小. 图1 图22、(1)如图1,现有一正方形ABCD,将三角尺的指直角顶点放在A点处,两条直角边也与CB的延长线、DC分别交于点E、F请你通过观察、测量,判断AE与AF之间的数量关系,并说明理由(2)将三角尺沿对角线平移到图2的位置,PE、PF之间有怎样的数量关系,并说明理由(3)如果将三角尺旋转到图3的位置,PE、PF之间是否还具有(2)中的数量关系?如果有,请说明3、分别是正方形的边、上的点,且,为垂足,求证: ABCEDOPQ4、C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边和等边,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ以下五个结论: AD=BE; ; AP=BQ; DE=DP; CP=CQ CPQ为等边三角形共有2对全等三角形 CO平分 CO平分恒成立的结论有_(把你认为正确的序号都填上)5、D为等腰斜边AB的中点,DMDN,DM,DN分别交BC,CA于点E,F。(1)当绕点D转动时,求证:DE=DF。(2)若AB=2,求四边形DECF的面积。6、如图,是正三角形,BDC是顶角的等腰三角形,以D为顶点作一个60角,角的两边分别交AB、AC边于M、N两点,连接MN探究:线段BM、MN、NC之间的关系,并加以证明7、点C为线段AB上一点,ACM, CBN都是等边三角形,线段AN,MC交于点E,BM,CN交于点F。求证:(1)AN=MB.(2)将ACM绕点C按逆时针方向旋转一定角度,如图所示,其他条件不变,(1)中的结论是否依然成立? (3)AN与BM相交所夹锐角是否发生变化。图 图8、复习“全等三角形”的知识时,老师布置了一道作业题:“如图,已知在中,AB=AC,P是内部任意一点,将AP绕A顺时针旋转至AQ,使,连接BQ、CP,则BQ=CP”小亮是个爱动脑筋的同学,他通过对图的分析,证明了ABQACP,从而证得BQ=CP之后,将点P移到等腰三角形ABC之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图给出证明9、将一张透明的平行四边形胶片沿对角线剪开,得到图中的两张三角形胶片和且。将这两张三角形胶片的顶点与顶点重合,把绕点顺时针方向旋转,这时与相交于点当旋转至如图位置,点,在同一直线上时,与的数量关系是 当继续旋转至如图位置时,(1)中的结论还成立吗?与存在怎样的数量关系?请说明理由10、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DCBE图1图2DCEAB11、两个全等的含30、60角的三角板ADE和三角板ABC放置在一起,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断EMC的形状,并说明理由12、如图,AD/BC,AD=BC,AEAD,AFAB,且AE=AD,AF=AB,求证:AC=EF13、如图,AEAB,ADAC,AB=AE,B=E,求证:(1)BD=CE;(2)BDCE14、如图,BFAC于点F,CEAB于点E,且BD=CD。求证:(1)BDECDF;(2) 点D在A的平分线上15、如图1,A、E、F、C在同一条直线上,AE=CF,过E、F分别作DEAC,BFAC,(1)若AB=CD,试说明BD平分EF;(2)若将DEC的边EC沿AC方向移动变为图2时,其余条件不变,BD是否还平分EF,请说明理由。16、如图,OP是MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:(1)如图,在中,ACB是直角,B=60,AD、CE分别是BAC、BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;(2)如图,在中,如果ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。OPAMNEBCDFACEFBD图图图17、如图1,点M为锐角内任意一点,连接AM、BM、CM以AB为一边向外作等边,将BM绕点B逆时针旋转60得到BN,连接EN(1)求证:AMBENB;(2)若AM+BM+CM的值最小,则称点M为的费尔马点若点M为的费尔马点,试求此时、的度数;(3)小翔受以上启发,得到一个作锐角三角形费尔马点的简便方法:如图2,分别以的AB、AC为一边向外作等边ABE和等边ACF,连接CE、BF,设交点为M,则点M即为的费尔马点试说明这种作法的依据18、如图1,四边形ABCD是正方形,M是AB延长线上一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与CBM的平分线BF相交于点F.(1)如图1,当点E在AB边的中点位置时: 通过测量DE,EF的长度,猜想DE与EF满足的数量关系是 ; 连接点E与AD边的中点N,猜想NE与BF满足的数量关系是 ; 请证明你的上述两猜想.(2)如图2,当点E在AB边上的任意位置时,请你在AD边上找到一点N, 使得NE=BF,进而猜想此时DE与EF有怎样的数量关系并证明图1 图219、如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:AF=DE;AFDE.(不需要证明)(1)如图2,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF.则上面的结论、是否仍然成立?(请直接回答“成立”或“不成立”)(2)如图3,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论、是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.20、如图1、图2、图3,AOB,COD均是等腰直角三角形,AOBCOD90,(1)在图1中,AC与BD相等吗,有怎样的位置关系?请说明理由。(2)若COD绕点O顺时针旋转一定角度后,到达图2的位置,请问AC与BD还相等吗,还具有那种位置关系吗?为什么?(3)若COD绕点O顺时针旋转一定角度后,到达图3的位置,请问AC与BD还相等吗?还具有上问中的位置关系吗?为什么?21、如图1,在中,BC边在直线l上,ACBC,且AC = BCEFP的边FP也在直线l上,边EF与边AC重合,且EF=FP(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;(2)将EFP沿直线l向左平移到图14-2的位置时,EP交AC于点Q,连结AP,BQ猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由 图1 (F) B C P A(E)l l P A E B C Q F 图2 l B P A 图3 E F Q C 22、如图所示,在和中,且点,在一条直线上,连接,分别为的中点(1)求证:;(2)在图的基础上,将绕点按顺时针方向旋转,其他条件不变,得到图所示的图形请直接写出(1)中的两个结论是否仍然成立. CENDABM图CAEMBDN图23、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点,且EF交正方形外角的平分线CF于点F,求证:AE=EF经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由ADFCGEB图1ADFCGEB图2ADFCGEB图324、问题背景,如下命题: 如图1,在正三角形ABC中,N为BC边上任一点,CM为正三角形外角ACK的平分线,若,则AN=NM。 如图2,在正方形ABCD中,N为BC边上任一点,CM为正方形外角DCK的平分线,若,则AN=NM。 如图3,在正五边形ABCDE中,N为BC边上任一点,CM为正五边形外角DCK的平分线,若,则AN=NM。任务要求:(1)请你证明以上三个命题;(2)请你继续完成下面的探索: 如图4,在正(3)边形ABCDEF中,N为BC边上任一点,CM为正边形外角DCK的平分线,问当ANM等于多少度时,结论AN=NM成立(不要求证明). 如图5,在梯形ABCD中,ADBC,AB=BC=CD,N为BC延长线上一点,CM为DCN的平分线,若ANM=ABC,请问AN=NM是否还成立?若成立,请给予证明;若不成立,请说明理由.25、已知AOB=90,AOB的平分线OM上有一点C,将一个三角板的直角顶点与点C重合,它的两条直角边分别与OA、OB或它们的反向延长线相交于D、E。(1)当三角形绕点C旋转到CD与OA垂直时(如图1),易证:CD=CE(2)当三角板绕点C旋转到CD与OA不垂直时,在图2图3这两种情况下,上述结论是否成立,请给予证明,若不成立,请写出你的猜想,不需证明。26、已知AB=CD=AE=BC+DE=2,ABC=AED=90,求五边形ABCDE的面积 27、已知AEAB,AFAC,AE=AB,AF=AC。求证:(1)EC=BF;(2)ECBF28、已知BE,CF是的高,且BP=AC,CQ=AB,试确定
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号