资源预览内容
第1页 / 共8页
第2页 / 共8页
第3页 / 共8页
第4页 / 共8页
第5页 / 共8页
第6页 / 共8页
第7页 / 共8页
第8页 / 共8页
亲,该文档总共8页全部预览完了,如果喜欢就下载吧!
资源描述
1.4.1 任意角的正弦、余弦函数1.4.2 单位圆与周期性整体设计教学分析 从初中的锐角三角函数到高中的任意角的三角函数,是学生在三角函数认知结构上的一次质的变革.要使这次认知结构的变革在课堂上顺利完成,关键是抓住三角函数的定义,其媒介是从初中的直角三角形转化为高中的平面直角坐标系.因此,准确理解任意角的三角函数定义是极其重要的. 在初中,学生已经学过锐角三角函数,它是用直角三角形边长的比来刻画的.锐角三角函数的引入与“解三角形”有直接关系.任意角的三角函数是刻画周期变化现象的数学模型,它与“解三角形”已经没有什么关系了.因此,与学习其他基本初等函数一样,学习任意角的三角函数,关键是要使学生理解三角函数的概念,并能用三角函数描述一些简单的周期变化规律,解决简单的实际问题. 本节教材的安排是以锐角三角函数为引子.由于我们已将角推广到任意角的情况,而且一般都是把角放在平面直角坐标系中,这样一来,我们就在直角坐标系中来找直角三角形,从而引出单位圆.利用单位圆的独特性,是高中数学中的一种重要方法.由于三角函数与单位圆之间的这种紧密的内部联系,使得我们在讨论三角函数的问题时,对于研究哪些问题以及用什么方法研究这些问题等,都可以从圆的性质(特别是对称性)中得到启发.在三角函数的研究中,数形结合思想起着非常重要的作用. 关于单位圆与周期性,教材上是根据在单位圆中,任意角的正弦、余弦函数定义得到周期函数的特征,然后通过分析两个等式直接下了定义.这样定义对学生来说来得有些突然,且没有应用例子.这样的效果使学生仅仅知道了周期函数及最小正周期的定义而不会应用,而定义的应用在好多的代数试题中有所涉及.因此,本教案设计时加了一个例题和两个变式训练,难度不大,算是抛砖引玉.同时,周期性作为函数的重要性质之一,在备课资料中做了扩展,以供学生课余时间进一步探究时查询,为学生的进一步探究提供一个跳板.以上内容在设计时都遵循了由易到难,由特殊到一般,由具体到抽象的认知规律,以便于学生接受并培养学生灵活运用知识的能力. 利用信息技术,可以很容易地建立角的终边和单位圆的交点坐标、单位圆中的三角函数线之间的联系,并在角的变化过程中,将这种联系直观地体现出来.所以,教学时尽可能的利用信息技术,帮助学生更好地理解正弦、余弦函数的本质,激发学生对数学研究的热情,培养学生勇于发现、勇于探索、勇于创新的精神.通过学生之间、师生之间的交流合作,实现共同探究、教学相长的教学效果.三维目标 1.通过回忆初中锐角的正弦函数定义,理解通过单位圆引入任意角的正弦函数的意义,熟练记忆正弦、余弦函数值在各象限的符号;掌握周期函数的概念及最小正周期的意义.2.通过本节课的学习,使学生对正弦、余弦函数的概念有一个全新的认识,对本章第一节的周期现象有了具体的定量的分析;在由锐角的正弦函数推广到任意角的正弦函数的过程中,体会特殊与一般的关系,形成一种辩证统一的思想;通过单位圆的学习,建立数形结合的思想,激发学生的学习积极性,培养学生分析问题、解决问题的能力.重点难点 教学重点:任意角的正弦、余弦函数定义及正弦、余弦函数值在各象限的符号;周期函数、最小正周期. 教学难点:对任意角的正弦、余弦函数定义的深刻理解及周期函数的概念.课时安排 1课时教学过程导入新课 思路1.教科书在定义任意角的正弦、余弦函数之前,作了如下铺垫:直角三角形为载体的锐角三角函数,引入弧度的概念后的三角函数的写法.因此教师可先让学生看教科书上的三角函数初中定义,回忆锐角三角函数概念,借助于直角三角形表示锐角三角函数的意义,从而为定义任意角的正弦、余弦奠定基础并引入单位圆,由此展开新课. 思路2.设疑引入,我们把角的范围推广了,锐角三角函数的定义还能适用吗?譬如三角形内角和为180,那么sin200的值还是三角形中200的对边与斜边的比值吗?类比角的概念的推广,怎样修正三角函数定义?由此展开新课.另外用“单位圆定义法”单刀直入给出定义,然后再在适当时机联系锐角三角函数,这也是一种不错的选择.推进新课新知探究提出问题 复习初中锐角三角函数定义(多媒体投影)可问:sin=_,cos=_ 阅读课本,理解什么是单位圆. 将锐角放到直角坐标系中,其正弦、余弦函数又是怎样的呢? 类比初中三角函数的定义,利用单位圆可否把锐角三角函数推广到任意角的三角函数呢? 当角的终边分别在第一、第二、第三、第四象限时,角的正弦、余弦函数值的正负号分别是什么?活动:我们学习角的概念的推广和弧度制,就是为了学习三角函数.教师与学生一起探究,在初中,我们学习了锐角的正弦函数值:sin.然后设问:把角放到平面直角坐标系中,我们来看看会是什么情况呢?如图1在直角坐标系中,以原点为圆心,以单位长为半径的圆,称为单位圆.给定一个锐角,使角的顶点与原点重合,始边与x轴正半轴重合,终边与单位圆交于点P(u,v),则点P的纵坐标v是角的正弦函数值,横坐标u是角的余弦函数值,即sinv,cosu.图1由图1可知,当0时,sin0=v=0,cos0=u=1;当时,sin=v=1,cos=u=0.这样就得到定义在0,上的角的正弦函数v=sin和余弦函数ucos. 以上显然不能包含所有的角,但是,我们可以仿照锐角正弦函数的定义.你认为该如何定义任意角的正弦函数? 一般地,如图2所示,在直角坐标系中,给定单位圆,对于任意角,使角的顶点与原点重合,始边与x轴正半轴重合,终边与单位圆交于点P(u,v),那么点P的纵坐标v叫作角的正弦函数,记作v=sin;点P的横坐标u叫作角的余弦函数,记作u=cos图2 通常,我们用x表示自变量,即x表示角的大小,用y表示函数值.这样,我们就定义了任意角的三角函数y=sinx和y=cosx.它们的定义域为全体实数,值域为-1,1. 利用课件出示图3,教师引导学生观察,当角的终边分别在第一、第二、第三、第四象限时,角的正弦、余弦函数值的正负号的情况.教师要让学生自己思考探究,确切理解正弦、余弦函数值在各象限的符号情况,并指导学生记忆自己的探究所得.图3 正弦、余弦函数的定义告诉我们,三角函数在各象限内的符号,取决于u,v的符号.当点P在第一、二象限时,纵坐标y0;点P在第三、四象限时,纵坐标y0.所以,正弦函数值对于第一、二象限角是正的,对于第三、四象限角是负的(可制作课件展示).同样地,余弦函数在第一、四象限是正的,在第二、三象限是负的;正切函数在第一、三象限是正的,在第二、四象限是负的,即“一全正,二正弦,三正切,四余弦”. 教师指导学生将自己的思考探究结果先填入下表,然后再填入直角坐标系的各个象限中,以便于加强记忆,灵活运用.象限函数第一象限第二象限第三象限第四象限sincos 在指导学生思考探究过程中,教师应点拨学生注意一些问题:尽管我们从锐角三角函数出发来引导学生学习任意角的三角函数,但任意角的三角函数与锐角三角函数之间并没有一般与特殊的关系.教师在教学中应当使学生体会到,用单位圆上点的坐标表示锐角三角函数,不仅简单、方便,而且反映本质,这也是数形结合的充分体现,思考时注意领悟. 教师还可以引导学生分析三角函数定义中的自变量是什么,对应关系有什么特点,函数值是什么?特别注意既表示一个角,又表示一个实数(弧度数).“它的终边与单位圆交于点P(x,y)”包含两个对应关系.从而可以把三角函数看成是自变量为实数的函数.特别指出的是:正弦、余弦函数都是以角为自变量,以比值为函数值的函数,因此sin不是sin与的乘积,而是一个比值;三角函数的记号是一个整体,离开自变量的“sin”“cos”是没有意义的.利用坐标平面内点的坐标的特征我们还可得到定义域,对于正弦函数sin=y,因为y恒有意义,即取任意实数,y恒有意义,也就是说sin恒有意义,所以正弦函数的定义域是R;类似地可写出余弦函数的定义域是R.讨论结果:略.提出问题观察图4,根据以上知识,在单位圆中,由任意角的正弦、余弦函数定义能得到哪些结论?怎样定义周期函数?怎样确定最小正周期?图4活动:教师引导学生总结终边相同角的表示法有什么特点:我们知道,终边相同的角相差2的整数倍,那么这些角的同一三角函数值有何关系呢?点拨学生从角的终边的关系到角之间的关系,再到函数值之间的关系进行讨论,然后再用三角函数的定义证明.由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,也就是 终边相同的角的正弦函数值相等,即sin(2k+x)=sinx,kZ; 终边相同的角的余弦函数值相等,即cos (2k+x)=cosx,kZ. 上述两个等式说明:对于任意一个角x,每增加2的整数倍,其正弦函数值、余弦函数值均不变.所以,正弦函数值、余弦函数值均是随角的变化呈周期性变化的.生活中有许多周期性变化的现象,例如,钟摆的摆心到铅垂线的距离随时间的变化也呈周期性变化.我们把这种随自变量的变化呈周期性变化的函数叫作周期函数,正弦函数、余弦函数是周期函数,2k (kZ)为正弦函数、余弦函数的周期.例如,-4,-2,2,4等都是它们的周期.其中2是正弦、余弦函数正周期中最小的一个(可以证明),称为最小正周期. 一般地,对于函数f(x),如果存在非零实数T,任取定义域内地任意一个x值,都有f(x+T)=f(x) 我们就把f(x)称为周期函数,T称为这个函数的周期. 特别注意:若不加特别说明,本书所指的周期均为函数的最小正周期. 讨论结果:略.应用示例思路1例1 在直角坐标系的单位圆中,-,(1)画出角;(2)求出角的终边与单位圆的交点坐标;(3)求出角的正弦、余弦函数值.图5活动:教师引导学生画出单位圆,充分利用任意角的定义.教师要留给学生一定的时间,让学生自己独立思考解决,可适时点拨引导学生习惯画图,充分利用数形结合,但要提醒学生注意角的任意性.解:(1)如图5,以原点为角的顶点,以x轴正半轴为始边,顺时针旋转,与单位圆交于点P,=MOP=-,即为所求作的角.(2)由于=-,点P在第四象限,所以点P的坐标为(,-).(3)根据任意角的三角函数定义,易得sin(-)=-,(-)=.点评:本例的目的是让学生熟悉角与单位圆的关系,巩固并加深理解任意角的正弦、余弦函数的定义以及利用单位圆解题,熟悉并善于利用数形结合的思想解题.变式训练 求的正弦、余弦值.图6解:在平面直角坐标系中,作AOB=,如图6. 易知AOB的终边与单位圆的交点坐标为(,-). 所以sin=-,cos=.例2 已知角的终边在直线y-3x上,求10sin+的值.活动:教师可让学生独立思考这一题目,本题虽然看似简单,但内含分类讨论思想,教师可以找两个学生来板演这个例题.对解答思路正确的学生给以鼓励,对思路受阻的学生教师要指出其思路的不正确性,并适时的点拨学生应该怎样组织步骤.解:设角终边上任一点为P(k,-3k)(k0),则x=k,y=-3k,r=|k|.(1)当k0时,r=k,是第四象限角,sin=-,=,10sin+=10(-)+3=-3+3=0;(2)当k0时,r=-k,为第二象限角,sin
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号