资源预览内容
第1页 / 共11页
第2页 / 共11页
第3页 / 共11页
第4页 / 共11页
第5页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
绝密启用前 2013年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试题卷共5页,22题。全卷满分150分。考试用时120分钟。祝考试顺利注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。2选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。答在试题卷、草稿纸上无效。3填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。答在试题卷、草稿纸上无效。4考生必须保持答题卡的整洁。考试结束后,请将本试题卷和答题卡一并上交。一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1已知全集,集合,则A B C D2已知,则双曲线:与:的A实轴长相等 B虚轴长相等 C离心率相等 D焦距相等3在一次跳伞训练中,甲、乙两位学员各跳一次设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A B C D4四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程,分别得到以下四个结论: y与x负相关且; y与x负相关且; y与x正相关且; y与x正相关且.其中一定不正确的结论的序号是A B C D 距学校的距离 距学校的距离 距学校的距离 ABCD时间时间时间时间OOOO距学校的距离 5小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是6将函数的图象向左平移个单位长度后,所得到的图象关于y轴对称,则m的最小值是A B C D7已知点、,则向量在方向上的投影为A B C D 8x为实数,表示不超过的最大整数,则函数在上为A奇函数 B偶函数 C增函数 D 周期函数9某旅行社租用、两种型号的客车安排900名客人旅行,、两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且型车不多于型车7辆则租金最少为A31200元 B36000元 C36800元 D38400元10已知函数有两个极值点,则实数的取值范围是A B C D二、填空题:本大题共7小题,每小题5分,共35分请将答案填在答题卡对应题号的位置上. 答错位置,书写不清,模棱两可均不得分. 否输入开始结束是输出第13题图11为虚数单位,设复数,在复平面内对应的点关于原点对称,若,则 .12某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则()平均命中环数为 ; ()命中环数的标准差为 .13阅读如图所示的程序框图,运行相应的程序. 若输入的值为2, 则输出的结果 . 14已知圆:,直线:().设圆上到直线的距离等于1的点的个数为,则 .15在区间上随机地取一个数x,若x满足的概率为,则 . 16我国古代数学名著数书九章中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是 寸. (注:平地降雨量等于盆中积水体积除以盆口面积;一尺等于十寸)17在平面直角坐标系中,若点的坐标,均为整数,则称点为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为,其内部的格点数记为,边界上的格点数记为. 例如图中是格点三角形,对应的,.()图中格点四边形DEFG对应的分别是 ;()已知格点多边形的面积可表示为,其中a,b,c为常数. 若某格点多边形对应的, 第17题图则 (用数值作答).三、解答题:本大题共5小题,共65分解答应写出文字说明、证明过程或演算步骤.18(本小题满分12分)在中,角,对应的边分别是,. 已知.()求角A的大小;()若的面积,求的值.19(本小题满分13分)已知是等比数列的前项和,成等差数列,且.()求数列的通项公式;()是否存在正整数,使得?若存在,求出符合条件的所有的集合;若不存在,说明理由20(本小题满分13分)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为同样可得在B,C处正下方的矿层厚度分别为,且. 过,的中点,且与直线平行的平面截多面体所得的截面为该多面体的一个中截面,其面积记为()证明:中截面是梯形;()在ABC中,记,BC边上的高为,面积为. 在估测三角形区域内正下方的矿藏储量(即多面体的体积)时,可用近似公式来估算. 已知,试判断与V的大小关系,并加以证明. 第20题图21(本小题满分13分)设,已知函数.()当时,讨论函数的单调性;()当时,称为、关于的加权平均数.(i)判断, ,是否成等比数列,并证明;(ii)、的几何平均数记为G. 称为、的调和平均数,记为H. 若,求的取值范围. 22(本小题满分14分)如图,已知椭圆与的中心在坐标原点,长轴均为且在轴上,短轴长分别为,过原点且不与轴重合的直线与,的四个交点按纵坐标从大到小依次为A,B,C,D记,和的面积分别为和.()当直线与轴重合时,若,求的值;()当变化时,是否存在与坐标轴不重合的直线l,使得?并说明理由第22题图2013年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:1B 2D 3A 4D 5C 6B 7A 8D 9C 10B二、填空题:11 12()7 ()2 134144 153 163 17()3, 1, 6 ()79三、解答题:18()由,得, 即,解得 或(舍去). 因为,所以. ()由得. 又,知. 由余弦定理得故. 又由正弦定理得. 19 ()设数列的公比为,则,. 由题意得 即 解得 故数列的通项公式为. ()由()有 . 若存在,使得,则,即 当为偶数时, 上式不成立;当为奇数时,即,则.综上,存在符合条件的正整数,且所有这样的n的集合为. 20 ()依题意平面,平面,平面,所以A1A2B1B2C1C2. 又,且 .因此四边形、均是梯形.由平面,平面,且平面平面,可得AA2ME,即A1A2DE. 同理可证A1A2FG,所以DEFG. 又、分别为、的中点,则、分别为、 的中点,即、分别为梯形、的中位线. 因此 ,而,故,所以中截面是梯形. (). 证明如下:由平面,平面,可得.而EMA1A2,所以,同理可得. 由是的中位线,可得即为梯形的高, 因此,即. 又,所以.于是.由,得,故. 21 ()的定义域为,. 当时,函数在,上单调递增;当时,函数在,上单调递减. ()(i)计算得,. 故, 即 . 所以成等比数列.因,即. 由得. (ii)由(i)知,.故由,得 . 当时,. 这时,的取值范围为; 当时,从而,由在上单调递增与式, 得,即的取值范围为;当时,从而,由在上单调递减与式, 得,即的取值范围为. 22 依题意可设椭圆和的方程分别为:,:. 其中,()解法1:如图1,若直线与轴重合,即直线的方程为,则,所以. 在C1和C2的方程中分别令,可得,于是.若,则,化简得. 由,可解得.故当直线与轴重合时,若,则. 解法2:如图1,若直线与轴重合,则,;,.所以. 若,则,化简得. 由,可解得.故当直线与轴重合时,若,则. 第22题解答图1第22题解答图2()解法1:如图2,若存在与坐标轴不重合的直线l,使得. 根据对称性,不妨设直线:,点,到直线的距离分别为,则因为,所以. 又,所以,即. 由对称性可知,所以,于是. 将的方程分别与C1,C2的方程联立,可求得,.根据对称性可知,于是. 从而由和式可得. 令,则由,可得,于是由可解得.因为,所以. 于是式关于有解,当且仅当,等价于. 由,可解得,即,
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号