资源预览内容
第1页 / 共37页
第2页 / 共37页
第3页 / 共37页
第4页 / 共37页
第5页 / 共37页
第6页 / 共37页
第7页 / 共37页
第8页 / 共37页
第9页 / 共37页
第10页 / 共37页
亲,该文档总共37页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
. . . . .2015年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题,共10小题,每小题5分,共50分1(5分)(2015湖南)已知=1+i(i为虚数单位),则复数z=()A1+iB1iC1+iD1i考点:复数代数形式的乘除运算菁优网版权所有专题:数系的扩充和复数分析:由条件利用两个复数代数形式的乘除法法则,求得z的值解答:解:已知=1+i(i为虚数单位),z=1i,故选:D点评:本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题2(5分)(2015湖南)设A、B是两个集合,则“AB=A”是“AB”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断菁优网版权所有专题:集合;简易逻辑分析:直接利用两个集合的交集,判断两个集合的关系,判断充要条件即可解答:解:A、B是两个集合,则“AB=A”可得“AB”,“AB”,可得“AB=A”所以A、B是两个集合,则“AB=A”是“AB”的充要条件故选:C点评:本题考查充要条件的判断与应用,集合的交集的求法,基本知识的应用3(5分)(2015湖南)执行如图所示的程序框图,如果输入n=3,则输出的S=()ABCD考点:程序框图菁优网版权所有分析:列出循环过程中S与i的数值,满足判断框的条件即可结束循环解答:解:判断前i=1,n=3,s=0,第1次循环,S=,i=2,第2次循环,S=,i=3,第3次循环,S=,i=4,此时,in,满足判断框的条件,结束循环,输出结果:S=故选:B点评:本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力4(5分)(2015湖南)若变量x、y满足约束条件,则z=3xy的最小值为()A7B1C1D2考点:简单线性规划菁优网版权所有专题:不等式的解法及应用分析:由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案解答:解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得C(0,1)由解得A(2,1),由,解得B(1,1)z=3xy的最小值为3(2)1=7故选:A点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题易错点是图形中的B点5(5分)(2015湖南)设函数f(x)=ln(1+x)ln(1x),则f(x)是()A奇函数,且在(0,1)上是增函数B奇函数,且在(0,1)上是减函数C偶函数,且在(0,1)上是增函数D偶函数,且在(0,1)上是减函数考点:利用导数研究函数的单调性菁优网版权所有专题:导数的综合应用分析:求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可解答:解:函数f(x)=ln(1+x)ln(1x),函数的定义域为(1,1),函数f(x)=ln(1x)ln(1+x)=ln(1+x)ln(1x)=f(x),所以函数是奇函数排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f(0)=0;x=时,f()=ln(1+)ln(1)=ln31,显然f(0)f(),函数是增函数,所以B错误,A正确故选:A点评:本题考查函数的奇偶性以及函数的单调性的判断与应用,考查计算能力6(5分)(2015湖南)已知()5的展开式中含x的项的系数为30,则a=()ABC6D6考点:二项式定理的应用菁优网版权所有专题:二项式定理分析:根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为求得r,再代入系数求出结果解答:解:根据所给的二项式写出展开式的通项,Tr+1=;展开式中含x的项的系数为30,r=1,并且,解得a=6故选:D点评:本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具7(5分)(2015湖南)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若XN=(,a2),则P(X+)=0.6826p(2X+2)=0.9544A2386B2718C3413D4772考点:正态分布曲线的特点及曲线所表示的意义菁优网版权所有专题:计算题;概率与统计分析:求出P(0X1)=0.6826=0.3413,即可得出结论解答:解:由题意P(0X1)=0.6826=0.3413,落入阴影部分点的个数的估计值为100000.3413=3413,故选:C点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量和的应用,考查曲线的对称性,属于基础题8(5分)(2015湖南)已知A,B,C在圆x2+y2=1上运动,且ABBC,若点P的坐标为(2,0),则|的最大值为()A6B7C8D9考点:圆的切线方程菁优网版权所有专题:计算题;直线与圆分析:由题意,AC为直径,所以|=|2+|=|4+|B为(1,0)时,|4+|7,即可得出结论解答:解:由题意,AC为直径,所以|=|2+|=|4+|所以B为(1,0)时,|4+|7所以|的最大值为7故选:B点评:本题考查向量知识的运用,考查学生分析解决问题的能力,比较基础9(5分)(2015湖南)将函数f(x)=sin2x的图象向右平移(0)个单位后得到函数g(x)的图象若对满足|f(x1)g(x2)|=2的x1、x2,有|x1x2|min=,则=()ABCD考点:函数y=Asin(x+)的图象变换菁优网版权所有专题:三角函数的图像与性质分析:利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可解答:解:因为将函数f(x)=sin2x的周期为,函数的图象向右平移(0)个单位后得到函数g(x)的图象若对满足|f(x1)g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1x2|min=,不妨x1=,x2=,即g(x)在x2=,取得最小值,sin(22)=1,此时=,不合题意,x1=,x2=,即g(x)在x2=,取得最大值,sin(22)=1,此时=,满足题意故选:D点评:本题考查三角函数的图象平移,函数的最值以及函数的周期的应用,考查分析问题解决问题的能力,是好题,题目新颖有一定难度,选择题,可以回代验证的方法快速解答10(5分)(2015湖南) 某工件的三视图如图所示现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()ABCD考点:简单空间图形的三视图菁优网版权所有专题:创新题型;空间位置关系与距离;概率与统计分析:根据三视图可判断其为圆锥,底面半径为1,高为2,求解体积利用几何体的性质得出此长方体底面边长为n的正方形,高为x,利用轴截面的图形可判断得出n=(1),0x2,求解体积式子,利用导数求解即可,最后利用几何概率求解即解答:解:根据三视图可判断其为圆锥,底面半径为1,高为2,V=2=加工成一个体积尽可能大的长方体新工件,此长方体底面边长为n的正方形,高为x,根据轴截面图得出:=,解得;n=(1),0x2,长方体的体积=2(1)2x,=x24x+2,=x24x+2=0,x=,x=2,可判断(0,)单调递增,(,2)单调递减,最大值=2(1)2=,原工件材料的利用率为=,故选:A点评:本题很是新颖,知识点融合的很好,把立体几何,导数,概率都相应的考查了,综合性强,属于难题二、填空题,共5小题,每小题5分,共25分11(5分)(2015湖南)(x1)dx=0考点:定积分菁优网版权所有专题:导数的概念及应用分析:求出被积函数的原函数,代入上限和下限求值解答:解:(x1)dx=(x)|=0;故答案为:0点评:本题考查了定积分的计算;关键是求出被积函数的原函数12(5分)(2015湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员成绩由好到差编号为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间139,151上的运动员人数是4考点:茎叶图菁优网版权所有专题:概率与统计分析:根据茎叶图中的数据,结合系统抽样方法的特征,即可求出正确的结论解答:解:根据茎叶图中的数据,得;成绩在区间139,151上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间139,151上的运动员应抽取7=4(人)故答案为:4点评:本题考查了茎叶图的应用问题,也考查了系统抽样方法的应用问题,是基础题目13(5分)(2015湖南)设F是双曲线C:=1的一个焦点若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为考点:双曲线的简单性质菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:设F(c,0),P(m,n),(m0),设PF的中点为M(0,b),即有m=c,n=2b,将中点M的坐标代入双曲线方程,结合离心率公式,计算即可得到解答:解:设F(c,0),P(m,n),(m0),设PF的中点为M(0,b),即有m=c,n=2b,将点(c,2b)代入双曲线方程可得,=1,可得e2=5,解得e=故答案为:点评:本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,同时考查中点坐标公式的运用,属于中档题14(5分)(2015湖南)设Sn为等比数列an的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则an=3n1考点:等差数列与等比数列的综合菁优
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号