资源预览内容
第1页 / 共18页
第2页 / 共18页
第3页 / 共18页
第4页 / 共18页
第5页 / 共18页
第6页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第9讲离散型随机变量的均值、方差和正态分布考纲解读1.理解取有限个值的离散型随机变量的均值、方差的概念,并能根据分布列正确求出期望与方差,并能解决一些实际问题(重点、难点)2.借助直方图认识正态分布曲线的特点及曲线所表示的意义,掌握正态曲线的相关性质,并能进行正确求解考向预测从近三年高考情况来看,本讲是高考中的热点题型. 预计2020年将会考查:与分布列相结合求期望与方差,通过设置密切贴近现实生活的情景,考查概率思想的应用意识和创新意识;正态分布的考查,尤其是正态总体在某一区间内的概率. 题型为解答题中的一问,试题难度不会太大,属中档题型.1离散型随机变量的均值与方差若离散型随机变量X的分布列为Xx1x2xixnPp1p2pipn (1)均值:称E(X)x1p1x2p2xipixnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平(2)D(X)(xiE(X)2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根为随机变量X的标准差2均值与方差的性质(1)E(aXb)aE(X)b;(2)D(aXb)a2D(X)(a,b为常数)3两点分布与二项分布的均值、方差4正态曲线(1)正态曲线的定义函数,(x)e,x(,),其中实数和(0)为参数,称,(x)的图象为正态分布密度曲线,简称正态曲线(是正态分布的期望,是正态分布的标准差)(2)正态曲线的特点曲线位于x轴上方,与x轴不相交;曲线是单峰的,关于直线x对称;曲线在x处达到峰值;曲线与x轴之间的面积为1;当一定时,曲线的位置由确定,曲线随着的变化而沿x轴平移;当一定时,曲线的形状由确定,越小,曲线越“高瘦”,表示总体的分布越集中;越大,曲线越“矮胖”,表示总体的分布越分散5正态分布(1)正态分布的定义及表示如果对于任何实数a,b(ab),随机变量X满足P(aXb),(x)dx(即xa,xb,正态曲线及x轴围成的曲边梯形的面积),则称随机变量X服从正态分布,记作XN(,2)(2)正态分布的三个常用数据P(X)0.6826;P(2X2)0.9544;P(3X3)0.9974.1概念辨析(1)随机变量不可以是负数,随机变量所对应的概率可以是负数,随机变量的均值不可以是负数()(2)正态分布中的参数和完全确定了正态分布,参数是正态分布的期望,是正态分布的标准差()(3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离均值的平均程度越小. ()(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布()答案(1)(2)(3)(4)2小题热身(1)已知随机变量X的分布列为X202P则E(X)与D(X)的值分别为()A0,2 B0, C2,0 D.,0答案B解析E(X)(2)020,D(X)(20)2(00)2(20)2.(2)设B(n,p),若E()15,D()11.25,则n()A45 B50 C55 D60答案D解析由解得 A1 B2 C3 D4答案B解析先求出E(X)(1)01.再由YaX3得E(Y)aE(X)3.a3.解得a2.(4)已知随机变量X服从正态分布N(3,1),且P(X2c1)P(Xc3),则c_.答案解析因为3,所以正态曲线关于直线x3对称,于是3,解得c.题型 离散型随机变量的均值、方差角度1已知离散型随机变量的均值与方差,求参数值1已知离散型随机变量X的分布列为X632Pabc其中a,b,c成等差数列,且E(X)3,则D(X)()A. B. C2 D3答案C解析由题意,得解得所以D(X)(63)2(33)2(23)22.角度2二项分布的均值、方差问题2由中央电视台综合频道(CCTV1)和唯众传媒联合制作的开讲啦是中国首档青年电视公开课每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了A,B两个地区的100名观众,得到如下的22列联表:已知在被调查的100名观众中随机抽取1名,该观众是B地区当中“非常满意”的观众的概率为0.35,且4y3z.(1)现从100名观众中用分层抽样的方法抽取20名进行问卷调查,则应抽取“满意”的A,B地区的人数各是多少;(2)完成上述表格,并根据表格判断是否有95%的把握认为观众的满意程度与所在地区有关系;(3)若以抽样调查的频率为概率,从A地区随机抽取3人,设抽到的观众“非常满意”的人数为X,求X的分布列和期望P(K2k0)0.0500.0100.001k03.8416.63510.828附:参考公式:K2.解(1)由题意,得0.35,所以x35,所以yz35,因为4y3z,所以y15,z20,A地抽取153,B地抽取204.(2)非常满意满意合计A301545B352055合计6535100K20.13.841,所以没有95%的把握认为观众的满意程度与所在地区有关系(3)从A地区随机抽取1人,抽到的观众“非常满意”的概率为P,随机抽取3人,X的可能取值为0,1,2,3,P(X0)3,P(X1)C2,P(X2)C2,P(X3)3,X0123P因为XB,所以E(X)32.角度3非二项分布的均值、方差问题3某省级示范性高中高三年级实验班和普通班在一个学期共同进行了四次大型考试,从年级的角度,对数学试卷中每道题的区分度作如下规定:区分度q1实验班的得分率普通班的得分率,当q10.3时,认为该题区分度不好从班级的角度,若在某实验班进行抽样调查,研究第12题的区分度,从班级数学成绩前8名的同学中随机抽取2人,后8名的同学中随机抽取2人,并且以抽取的4人的答题结果为依据计算区分度,区分度q2前8名同学中抽取的2名同学答题的正确率后8名同学中抽取的2名同学答题的正确率,当q21.75,则p的取值范围是()A. B. C. D.答案B解析根据题意,学生一次发球成功的概率为p,即P(X1)p,发球二次的概率P(X2)p(1p),发球三次的概率P(X3)(1p)2,则E(X)p2p(1p)3(1p)2p23p3,依题意有E(X)1.75,则p23p31.75,解得p或p,结合p的实际意义,可得0p,即p.故选B.2(2018贵阳模拟)某高校学生社团为了解“大数据时代”下毕业生对就业情况的满意度,对20名毕业生进行问卷计分调查(满分100分),得到如图所示的茎叶图:(1)计算男生打分的平均分,观察茎叶图,评价男、女生打分的分散程度;(2)从打分在80分以上的毕业生中随机抽取3人,求被抽到的女生人数X的分布列和数学期望解(1)男生打分的平均分为(55536265717073748681)69.由茎叶图知,女生打分比较集中,男生打分比较分散(2)打分在80分以上的毕业生有3女2男,X的可能取值为1,2,3,P(X1),P(X2),P(X3),X的分布列为X123PE(X)123.3某新建公司规定,招聘的职工须参加不小于80小时的某种技能培训才能上班公司人事部门在招聘的职工中随机抽取200名参加这种技能培训的数据,按时间段75,80),80,85),85,90),90,95),(95,100(单位:小时)进行统计,其频率分布直方图如图所示(1)求抽取的200名职工中,参加这种技能培训时间不少于90小时的人数,并估计从招聘职工中任意选取一人,其参加这种技能培训时间不少于90小时的概率;(2)从招聘职工(人数很多)中任意选取3人,记X为这3名职工中参加这种技能培训时间不少于90小时的人数,试求X的分布列和数学期望E(X)和方差D(X)解(1)依题意,培训时间在90,95)小时的人数为2000.06560, 在95,100)小时的人数为2000.02520,故满足题意的概率估计为P.(2)依题意,随机变量X的可能取值为0,1,2,3,P(X0)C3,P(X1)C2,P(X2)C2,P(X3)C3,则随机变量X的分布列为X0
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号