资源预览内容
第1页 / 共6页
第2页 / 共6页
第3页 / 共6页
第4页 / 共6页
第5页 / 共6页
第6页 / 共6页
亲,该文档总共6页全部预览完了,如果喜欢就下载吧!
资源描述
第二十三章 旋转 单元要点分析 教学内容 1主要内容: 图形的旋转及其有关概念:包括旋转、旋转中心、旋转角图形旋转的有关性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等通过不同形式的旋转,设计图案中心对称及其有关概念:中心对称、对称中心、关于中心的对称点;关于中心对称的两个图形中心对称的性质:对称点所连线段都经过对称中心,而且被对称中心所平分;关于中心对称的两个图形是全等图形中心对称图形:概念及性质:包括中心对称图形、对称中心关于原点对称的点的坐标:两个点关于原点对称时,它们的坐标符号都相反,即点P(x,y)关于原点的对称点为P(-x,-y)课题学习图案设计 2本单元在教材中的地位与作用: 学生通过平移、平面直角坐标系,轴对称、反比例函数、四边形等知识的学习,初步积累了一定的图形变换数学活动经验本章在此基础上,让学生进行观察、分析、画图、简单图案的欣赏与设计等操作性活动形成图形旋转概念它又对今后继续学习数学,尤其是几何,包括圆等内容的学习起着桥梁铺垫之作用 教学目标 1知识与技能 了解图形的旋转的有关概念并理解它的基本性质 了解中心对称的概念并理解它的基本性质 了解中心对称图形的概念;掌握关于原点对称的两点的关系并应用;再通过几何操作题的练习,掌握课题学习中图案设计的方法 2过程与方法 (1)让学生感受生活中的几何,通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题 (2)通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题 (3)经历复习图形的旋转的有关概念和性质,分析不同的旋转中心,不同的旋转角,出现不同的效果并对各种情况进行分类 (4)复习对称轴和轴对称图形的有关概念,通过知识迁移讲授中心对称图形和对称中心的有关内容,并附加练习巩固这个内容 (5)通过几何操作题,探究猜测发现规律,并给予证明,附加例题进一步巩固 (6)复习中心对称图形和对称中心的有关概念,然后提出问题,让学生观察、思考,老师归纳得出中心对称图形和对称中心的有关概念,最后用一些例题、练习来巩固这个内容 (7)复习平面直角坐标系的有关概念,通过实例归纳出两个点关于原点对称时,坐标符号之间的关系,并运用它解决一些实际问题 (8)通过复习平移、轴对称、旋转等有关概念研究如何进行图形设计 3情感、态度与价值观 让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情 教学重点 1图形旋转的基本性质 2中心对称的基本性质 3两个点关于原点对称时,它们坐标间的关系 教学难点 1图形旋转的基本性质的归纳与运用 2中心对称的基本性质的归纳与运用 教学关键 1利用几何直观,经历观察,产生概念; 2利用几何操作,通过观察、探究,用不完全归纳法归纳出图形的旋转和中心对称的基本性质 单元课时划分 本单元教学时间约需10课时,具体分配如下: 231 图形的旋转 3课时 232 中心对称 4课时 233 课题学习;图案设计 1课时 教学活动、习题课、小结 2课时23.1 图形的旋转(1)第一课时 教学内容 1什么叫旋转?旋转中心?旋转角? 2什么叫旋转的对应点? 教学目标 了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题 通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题 重难点、关键 1重点:旋转及对应点的有关概念及其应用 2难点与关键:从活生生的数学中抽出概念 教具、学具准备 小黑板、三角尺 教学过程 一、复习引入 (学生活动)请同学们完成下面各题1将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形2如图,已知ABC和直线L,请你画出ABC关于L的对称图形ABC 3圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗? (口述)老师点评并总结: (1)平移的有关概念及性质 (2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它既有的一些性质 (3)什么叫轴对称图形? 二、探索新知 我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究 1请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度? (口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心如果从现在到下课时针转了_度,分针转了_度,秒针转了_度 2再看我自制的好像风车风轮的玩具,它可以不停地转动如何转到新的位置?(老师点评略) 3第1、2两题有什么共同特点呢? 共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度 像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角 如果图形上的点P经过旋转变为点P,那么这两个点叫做这个旋转的对应点 下面我们来运用这些概念来解决一些问题 例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到OEF,在这个旋转过程中: (1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置? 解:(1)旋转中心是O,AOE、BOF等都是旋转角 (2)经过旋转,点A和点B分别移动到点E和点F的位置 例2(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形 (1)这个图案可以看做是哪个“基本图案”通过旋转得到的? (2)请画出旋转中心和旋转角(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的(2)画图略(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H 最后强调,这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的 三、巩固练习 教材 练习1、2、3 四、应用拓展例3两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由 分析:设任转一角度,如图中的虚线部分,要说明旋转后正方形重叠部分面积不变,只要说明SOEE=SODD,那么只要说明OEFODD 解:面积不变 理由:设任转一角度,如图所示 在RtODD和RtOEE中 ODD=OEE=90 DOD=EOE=90-BOE OD=OD ODDOEE SODD=SOEE S四边形OEBD=S正方形OEBD= 五、归纳小结(学生总结,老师点评) 本节课要掌握: 1旋转及其旋转中心、旋转角的概念 2旋转的对应点及其它们的应用 六、布置作业 1教材 复习巩固1、2、32同步练习一、选择题1在26个英文大写字母中,通过旋转180后能与原字母重合的有( ) A6个 B7个 C8个 D9个2从5点15分到5点20分,分针旋转的度数为( ) A20 B26 C30 D363如图1,在RtABC中,ACB=90,A=40,以直角顶点C为旋转中心,将ABC旋转到ABC的位置,其中A、B分别是A、B的对应点,且点B在斜边AB上,直角边CA交AB于D,则旋转角等于( )A70 B80 C60 D50 (1) (2) (3)二、填空题1在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为_,这个定点称为_,转动的角为_2如图2,ABC与ADE都是等腰直角三角形,C和AED都是直角,点E在AB上,如果ABC经旋转后能与ADE重合,那么旋转中心是点_;旋转的度数是_3如图3,ABC为等边三角形,D为ABC内一点,ABD经过旋转后到达ACP的位置,则,(1)旋转中心是_;(2)旋转角度是_;(3)ADP是_三角形三、综合提高题1阅读下面材料:如图4,把ABC沿直线BC平行移动线段BC的长度,可以变到ECD的位置如图5,以BC为轴把ABC翻折180,可以变到DBC的位置 (4) (5) (6) (7) 如图6,以A点为中心,把ABC旋转90,可以变到AED的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换 回答下列问题 如图7,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=AB (1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,使ABE移到ADF的位置?(2)指出如图7所示中的线段BE与DF之间的关系 2一块等边三角形木块,边长为1,如图,现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少?答案:一、1B 2C 3B二、1旋转 旋转中心 旋转角 2A 45 3点A 60 等边三、1(1)通过旋转,即以点A为旋转中心,将ABE逆时针旋转90
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号