资源预览内容
第1页 / 共5页
第2页 / 共5页
亲,该文档总共5页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
拔高专题 抛物线中的压轴题一、基本模型构建常见模型思考在边长为1的正方形网格中有A, B, C三点,画出以A,B,C为其三个顶点的平行四边形ABCD。在射线BD上可以找出一点组成三角形,可得ABC、BEC、CBD为等腰三角形。二、拔高精讲精练探究点一:因动点产生的平行四边形的问题例1: 在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,AMB的面积为S求S关于m的函数关系式,并求出S的最大值(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标。解:(1)设此抛物线的函数解析式为:y=ax2+bx+c(a0),将A(-4,0),B(0,-4),C(2,0)三点代入函数解析式得:解得,所以此函数解析式为:y=x2+x4;(2)M点的横坐标为m,且点M在这条抛物线上,M点的坐标为:(m,m2+m4),S=SAOM+SOBM-SAOB=4(-m2-m+4)+4(-m)-44=-m2-2m+8-2m-8=-m2-4m=-(m+2)2+4,-4m0,当m=-2时,S有最大值为:S=-4+8=4答:m=-2时S有最大值S=4(3)设P(x,x2+x-4)当OB为边时,根据平行四边形的性质知PQOB,且PQ=OB,Q的横坐标等于P的横坐标,又直线的解析式为y=-x,则Q(x,-x)由PQ=OB,得|-x-(x2+x-4)|=4,解得x=0,-4,-22x=0不合题意,舍去如图,当BO为对角线时,知A与P应该重合,OP=4四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4)由此可得Q(-4,4)或(-2+2,2-2)或(-2-2 ,2+2 )或(4,-4)【变式训练】(2015贵阳)如图,经过点C(0,-4)的抛物线y=ax2+bx+c(a0)与x轴相交于A(-2,0),B两点(1)a 0,b2-4ac 0(填“”或“”);(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由解:(1)a0,b2-4ac0;(2)直线x=2是对称轴,A(-2,0),B(6,0),点C(0,-4),将A,B,C的坐标分别代入y=ax2+bx+c,解得:a=,b=-,c=-4,抛物线的函数表达式为y=x2-x-4;(3)存在,理由为:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CEx轴,交抛物线于点E,过点E作EFAC,交x轴于点F,如图1所示,则四边形ACEF即为满足条件的平行四边形,抛物线y=x2-x-4关于直线x=2对称,由抛物线的对称性可知,E点的横坐标为4,又OC=4,E的纵坐标为-4,存在点E(4,-4);(ii)假设在抛物线上还存在点E,使得以A,C,F,E为顶点所组成的四边形是平行四边形,过点E作EFAC交x轴于点F,则四边形ACFE即为满足条件的平行四边形,AC=EF,ACEF,如图2,过点E作EGx轴于点G,ACEF,CAO=EFG,又COA=EGF=90,AC=EF,CAOEFG,EG=CO=4,点E的纵坐标是4,4=x2-x-4,解得:x1=2+2,x2=2-2,点E的坐标为(2+2,4),同理可得点E的坐标为(2-2,4)。【教师总结】因动点产生的平行四边形问题,在中考题中比较常见,考生一般都能解答,但是解题时需要考虑各种可能性,以免因答案不全面.主要有以下几种类型:(1)已知三个定点,再找一个顶点构成平行四边形;(2)已知两个顶点,再找两个顶点构成平行四边形。确定两定点的线段为一边,则两动点连接的线段和已知边平行且相等;两定点连接的线段没确定为平行四边形的边时,则这条线段可能为平行四边形的边或对角线。探究点二:因动点产生的等腰三角形的问题例2: (2015铜仁市)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使PBC为等腰三角形?若存在请求出点P的坐标);(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从 点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,MNB面积最大,试求出最大面积解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=-4,c=3,二次函数的表达式为:y=x2-4x+3;(2)令y=0,则x2-4x+3=0,解得:x=1或x=3,B(3,0),BC=32,点P在y轴上,当PBC为等腰三角形时分三种情况进行讨论:如图1,当CP=CB时,PC=3,OP=OC+PC=3+3或OP=PC-OC=3-3P1(0,3+3),P2(0,3-3);当PB=PC时,OP=OB=3, P3(0,-3);当BP=BC时,OC=OB=3,此时P与O重合,P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3-3)或(0,-3)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2-t,则DN=2t,SMNB=(2-t)2t=-t2+2t=-(t-1)2+1,即当M(2,0)、N(2,2)或(2,-2)时MNB面积最大,最大面积是1。【变式训练】(2015黔东南州)如图,已知二次函数y1=-x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b(1)求二次函数y1的解析式及点B的坐标;(2)由图象写出满足y1y2的自变量x的取值范围;(3)在两坐标轴上是否存在点P,使得ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由解:(1)将A点坐标代入y1,得-16+13+c=0解得c=3,二次函数y1的解析式为y=-x2+x+3,B点坐标为(0,3);(2)由图象得直线在抛物线上方的部分,是x0或x4,x0或x4时,y1y2;(3)直线AB的解析式为y=-x+3,AB的中点为(2,),AB的垂直平分线为y=x-,当x=0时,y=-,P1(0,-),当y=0时,x=,P2(,0),综上所述:P1(0,-),P2(,0),使得ABP是以AB为底边的等腰三角形。【教师总结】这类问题是以抛物线为载体,探讨是否存在一些点,使其能构成等腰特殊三角形,解决的基本思路时是:假设存在,数形结合,分类讨论,逐一解决.
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号