资源预览内容
亲,该文档总共32页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2017年浙江省嘉兴市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1(3分)2的绝对值是()A2B2CD2(3分)长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A4B5C6D93(3分)已知一组数据a,b,c的平均数为5,方差为4,那么数据a2,b2,c2的平均数和方差分别是()A3,2B3,4C5,2D5,44(3分)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A中B考C顺D利5(3分)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A红红不是胜就是输,所以红红胜的概率为B红红胜或娜娜胜的概率相等C两人出相同手势的概率为D娜娜胜的概率和两人出相同手势的概率一样6(3分)若二元一次方程组的解为,则ab=()A1B3CD7(3分)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1)若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A向左平移1个单位,再向下平移1个单位B向左平移(21)个单位,再向上平移1个单位C向右平移个单位,再向上平移1个单位D向右平移1个单位,再向上平移1个单位8(3分)用配方法解方程x2+2x1=0时,配方结果正确的是()A(x+2)2=2B(x+1)2=2C(x+2)2=3D(x+1)2=39(3分)一张矩形纸片ABCD,已知AB=3,AD=2,小明按如图步骤折叠纸片,则线段DG长为()ABC1D210(3分)下列关于函数y=x26x+10的四个命题:当x=0时,y有最小值10;n为任意实数,x=3+n时的函数值大于x=3n时的函数值;若n3,且n是整数,当nxn+1时,y的整数值有(2n4)个;若函数图象过点(a,y0)和(b,y0+1),其中a0,b0,则ab其中真命题的序号是()ABCD二、填空题(每题4分,满分24分,将答案填在答题纸上)11(4分)分解因式:abb2= 12(4分)若分式的值为0,则x的值为 13(4分)如图,小明自制一块乒乓球拍,正面是半径为8cm的O,=90,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为 14(4分)七(1)班举行投篮比赛,每人投5球如图是全班学生投进球数的扇形统计图,则投进球数的众数是 15(4分)如图,把n个边长为1的正方形拼接成一排,求得tanBA1C=1,tanBA2C=,tanBA3C=,计算tanBA4C= ,按此规律,写出tanBAnC= (用含n的代数式表示)16(4分)一副含30和45角的三角板ABC和DEF叠合在一起,边BC与EF重合,BC=EF=12cm(如图1),点G为边BC(EF)的中点,边FD与AB相交于点H,此时线段BH的长是 现将三角板DEF绕点G按顺时针方向旋转(如图2),在CGF从0到60的变化过程中,点H相应移动的路径长共为 (结果保留根号)三、解答题(本大题共8小题,第17-19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分.)17(6分)(1)计算:()221(4);(2)化简:(m+2)(m2)3m18(6分)小明解不等式1的过程如图请指出他解答过程中错误步骤的序号,并写出正确的解答过程19(6分)如图,已知ABC,B=40(1)在图中,用尺规作出ABC的内切圆O,并标出O与边AB,BC,AC的切点D,E,F(保留痕迹,不必写作法);(2)连接EF,DF,求EFD的度数20(8分)如图,一次函数y=k1x+b(k10)与反比例函数y=(k20)的图象交于点A(1,2),B(m,1)(1)求这两个函数的表达式;(2)在x轴上是否存在点P(n,0)(n0),使ABP为等腰三角形?若存在,求n的值;若不存在,说明理由21(8分)小明为了了解气温对用电量的影响,对去年自己家的每月用电量和当地气温进行了统计当地去年每月的平均气温如图1,小明家去年月用电量如图2根据统计图,回答下面的问题:(1)当地去年月平均气温的最高值、最低值各为多少?相应月份的用电量各是多少?(2)请简单描述月用电量与气温之间的关系;(3)假设去年小明家用电量是所在社区家庭年用电量的中位数,据此他能否预测今年该社区的年用电量?请简要说明理由22(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80(FGK=80),身体前倾成125(EFG=125),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?(sin800.98,cos800.17,1.41,结果精确到0.1)23(10分)如图,AM是ABC的中线,D是线段AM上一点(不与点A重合)DEAB交AC于点F,CEAM,连结AE(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由(3)如图3,延长BD交AC于点H,若BHAC,且BH=AM求CAM的度数;当FH=,DM=4时,求DH的长24(12分)如图,某日的钱塘江观潮信息如图:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示,其中:“11:40时甲地交叉潮的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s=t2+bt+c(b,c是常数)刻画(1)求m的值,并求出潮头从甲地到乙地的速度;(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t30),v0是加速前的速度)2017年浙江省嘉兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1(3分)(2017随州)2的绝对值是()A2B2CD【分析】根据负数的绝对值等于它的相反数解答【解答】解:2的绝对值是2,即|2|=2故选:A【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是02(3分)(2017舟山)长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是()A4B5C6D9【分析】已知三角形的两边长分别为2和7,根据在三角形中任意两边之和第三边,任意两边之差第三边;即可求第三边长的范围,再结合选项选择符合条件的【解答】解:由三角形三边关系定理得72x7+2,即5x9因此,本题的第三边应满足5x9,把各项代入不等式符合的即为答案4,5,9都不符合不等式5x9,只有6符合不等式,故选:C【点评】考查了三角形三边关系,此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可3(3分)(2017舟山)已知一组数据a,b,c的平均数为5,方差为4,那么数据a2,b2,c2的平均数和方差分别是()A3,2B3,4C5,2D5,4【分析】根据数据a,b,c的平均数为5可知(a+b+c)=5,据此可得出(a2+b2+c2)的值;再由方差为4可得出数据a2,b2,c2的方差【解答】解:数据a,b,c的平均数为5,(a+b+c)=5,(a2+b2+c2)=(a+b+c)2=52=3,数据a2,b2,c2的平均数是3;数据a,b,c的方差为4,(a5)2+(b5)2+(c5)2=4,a2,b2,c2的方差=(a23)2+(b23)2+(c23)2=(a5)2+(b5)2+(c5)2=4故选B【点评】本题考查的是方差,熟记方差的定义是解答此题的关键4(3分)(2017舟山)一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A中B考C顺D利【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“利”是相对面故选C【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题5(3分)(2017舟山)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A红红不是胜就是输,所以红红胜的概率为B红红胜或娜娜胜的概率相等C两人出相同手势的概率为D娜娜胜的概率和两人出相同手势的概率一样【分析】利用列表法列举出所有的可能,进而分析得出答案【解答】解:红红和娜娜玩“锤子、剪刀、布”游戏,所有可能出现的结果列表如下: 红红娜娜锤子剪刀布锤子(锤子,锤子)(锤子,剪刀)(锤子,布)剪刀(剪刀,锤子)(剪刀,剪刀)(剪刀,布)布(布,锤子)(布,剪刀)(布,布)由表格可知,共有9种等可能情况其中平局的有3种:(锤子,锤子)、(剪刀,剪刀)、(布,布)因此,红红和娜娜两人出相同手势的概率为,两人获胜的概率都为,红红不是胜就是输,所以红红胜的概率为,错误,故选项A符合题意,故选项B,C,D不合题意;故选:A【点评】此题主要考查了列表法求概率,根据题意正确列举出所有可能是解题关键6(3分)(2017舟山)若二元一次方程组的解为,则ab=()A1B3CD【分析】将两式相加即可求出ab的值【解答】解:x+y=3,3x5y=4,两式相加可得:(x+y)+(3x5y)=3+4,4x4y=7,xy=,x=a,y=b,ab=xy=故选(D)【点评】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出ab的值,本题属于基础题型7(3分)(2017
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号