资源预览内容
第1页 / 共8页
第2页 / 共8页
第3页 / 共8页
第4页 / 共8页
第5页 / 共8页
第6页 / 共8页
第7页 / 共8页
第8页 / 共8页
亲,该文档总共8页全部预览完了,如果喜欢就下载吧!
资源描述
高三总复习-立体几何一、 本讲进度立体几何复习二、本讲主要内容空间几何图形的证明及计算。三、复习指导1、 空间基本元素:直线与平面之间位置关系的小结。如下图: 条件 结论线线平行线面平行面面平行垂直关系线线平行如果ab,bc,那么ac如果a,a,=b,那么ab如果,=a,=b,那么ab如果a,b,那么ab线面平行如果ab,a,b,那么a如果,a,那么面面平行如果a,b,c,d,ac,bd,ab=P,那么如果a,b,ab=P,a,b,那么如果,那么如果a,a,那么 条件 结论线线垂直线面垂直面面垂直平行关系线线垂直二垂线定理及逆定理如果a,b,那么ab如果三个平面两两垂直,那么它们交线两两垂直如果ab,ac,那么bc线面垂直如果ab,ac,b,c,bc=P,那么a如果,=b,a,ab,那么a如果a,ba,那么b面面垂直定义(二面角等于900)如果a,a,那么2、 空间元素位置关系的度量 (1)角:异面直线所成的角,直线和平面所成的角,二面角,都化归为平面几何中两条相交直线所成的角。异面直线所成的角:通过平移的变换手段化归,具体途径有:中位线、补形法等。直线和平面所成的角:通过作直线射影的作图法得到。二面角:化归为平面角的度量,化归途径有:定义法,三垂线定理法,棱的垂面法及面积射影法。 (2)距离:异面直线的距离,点面距离,线面距离及面面距离。异面直线的距离:除求公垂线段长度外,通常化归为线面距离和面面距离。线面距离,面面距离常化归为点面距离。3、 两个重要计算公式(1) cos=cos1cos2其中1为斜线PA与平面所成角,即为PAO,2为PA射影AO与内直线AB所成的角,为PAB。显然,1,2(2) 异面直线上两点间距离公式 设异面直线a,b所成角为 则EF2=m2+n2+d22mncos 4、棱柱、棱锥是常见的多面体。在正棱柱中特别要运用侧面与底面垂直的性质解题,在正棱锥中,要熟记由高PO,斜高PM,侧棱PA,底面外接圆半径OA,底面内切圆半径OM,底面正多边形半边长OM,构成的三棱锥,该三棱锥四个面均为直角三角形。 5、球是由曲面围成的旋转体。研究球,主要抓球心和半径。6、立体几何的学习,主要把握对图形的识别及变换(分割,补形,旋转等),因此,既要熟记基本图形中元素的位置关系和度量关系,也要能在复杂背景图形中“剥出”基本图形。四、典型例题例1、在正方体ABCDA1B1C1D1中,E、F、G、H分别为棱BC、CC1、C1D1、AA1的中点,O为AC与BD的交点(如图),求证:(1)EG平面BB1D1D;(2)平面BDF平面B1D1H;(3)A1O平面BDF;(4)平面BDF平面AA1C。解析: (1)欲证EG平面BB1D1D,须在平面BB1D1D内找一条与EG平行的直线,构造辅助平面BEGO及辅助直线BO,显然BO即是。 (2)按线线平行线面平行面面平行的思路,在平面B1D1H内寻找B1D1和OH两条关键的相交直线,转化为证明:B1D1平面BDF,OH平面BDF。(3) 为证A1O平面BDF,由三垂线定理,易得BDA1O,再寻A1O垂直于平面BDF内的另一条直线。猜想A1OOF。借助于正方体棱长及有关线段的关系计算得:A1O2+OF2=A1F2A1OOF。 (4) CC1平面AC CC1BD又BDAC BD平面AA1C又BD平面BDF 平面BDF平面AA1C例2、在正方体ABCDA1B1C1D1中,M为DD1中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是A、 B、 C、 D、解析:取P点的特殊点A1,连OA1,在底面上过O作OEAD于E,连A1E OE平面ADD1A1,AMA1E根据三垂线定理,得:AMOA1 选D评注:化“动”为“定”是处理“动”的思路例3、如图,三棱锥DABC中,平面ABD、平面ABC均为等腰直角三角形,ABC=BAD=900,其腰BC=a,且二面角DABC=600。(1) 求异面直线DA与BC所成的角;(2) 求异面直线BD与AC所成的角;(3) 求D到BC的距离;(4) 求异面直线BD与AC的距离。解析:(1) 在平面ABC内作AEBC,从而得DAE=600 DA与BC成600角(2) 过B作BFAC,交EA延长线于F,则DBF为BD与AC所成的角 由DAF易得AF=a,DA=a,DAF=1200 DF2=a2+a2-2a2()=3a2 DF=a DBF中,BF=AC=a cosDBF= 异面直线BD与AC成角arccos (3) BA平面ADE 平面DAE平面ABC故取AE中点M,则有DM平面ABC;取BC中点N,由MNBC,根据三垂线定理,DNBC DN是D到BC的距离在DMN中,DM=a,MN=a DN=a (4) BF平面BDF,AC平面BDF,ACBF AC平面BDF又BD平面BDF AC与BD的距离即AC到平面BDF的距离 , 由,即异面直线BD与AC的距离为评注:三棱锥的等体积变换求高,也是求点到面距离的常用方法。例4、如图,在600的二面角CD中,AC,BD,且ACD=450,tgBDC=2,CD=a,AC=x,BD=x,当x为何值时,A、B的距离最小?并求此距离。解析:作AECD于E,BFCD于F,则EF为异面直线AE、BF的公垂段,AE与BF成600角,可求得|AB|=,当x=时,|AB|有最小值。评注:转化为求异面直线上两点间距离的最小值。例5、如图,斜三棱柱ABCABC中,底面是边长为a的正三角形,侧棱长为 b,侧棱AA与底面相邻两边AB、AC都成450角,求此三棱柱的侧面积和体积。解析:在侧面AB内作BDAA于D连结CD AC=AB,AD=AD,DAB=DAC=450 DABDAC CDA=BDA=900,BD=CD BDAA,CDAA DBC是斜三棱柱的直截面在RtADB中,BD=ABsin450= DBC的周长=BD+CD+BC=(+1)a,DBC的面积= S侧=b(BD+DC+BC)=(+1)ab V=AA=评注:求斜棱柱的侧面积有两种方法,一是判断各侧面的形状,求各侧面的面积之和,二是求直截面的周长与侧棱的乘积,求体积时同样可以利用直截面,即V=直截面面积侧棱长。例6、在三棱锥PABC中,PC=16cm,AB=18cm,PA=PB=AC=BC=17cm,求三棱锥的体积VP-ABC。解析:取PC和AB的中点M和N 在AMB中,AM2=BM2=172-82=259 AM=BM=15cm,MN2=152-92=246 SAMB=ABMN=1812=108(cm2) VP-ABC=16108=576(cm3)评注:把一个几何体分割成若干个三棱锥的方法是一种用得较多的分割方法,这样分割的结果,一方面便于求体积,另一方面便于利用体积的相关性质,如等底等高的锥体的体积相等,等底的两个锥体的体积的比等于相应高的比,等等。五、同步练习(一) 选择题 1、l1l2,a,b与l1,l2都垂直,则a,b的关系是 A、平行 B、相交 C、异面 D、平行、相交、异面都有可能 2、异面直线a,b,ab,c与a成300,则c与b成角范围是 A、600,900 B、300,900 C、600,1200 D、300,1200 3、正方体AC1中,E、F分别是AB、BB1的中点,则A1E与C1F所成的角的余弦值是 A、 B、 C、 D、 4、在正ABC中,ADBC于D,沿AD折成二面角BADC后,BC=AB,这时二面角BADC大小为A、600 B、900 C、450 D、12005、一个山坡面与水平面成600的二面角,坡脚的水平线(即二面角的棱)为AB,甲沿山坡自P朝垂直于AB的方向走30m,同时乙沿水平面自Q朝垂直于AB的方向走30m,P、Q都是AB上的点,若PQ=10m,这时甲、乙2个人之间的距离为A、 B、 C、 D、6、E、F分别是正方形ABCD的边AB和CD的中点,EF交BD于O,以EF为棱将正方形折成直二面角如图,则BOD=A、1350 B、1200 C、1500 D、9007、三棱锥VABC中,VA=BC,VB=AC,VC=AB,侧面与底面ABC所成的二面角分别为,(都是锐角),则cos+cos+cos等于A、1 B、2 C、 D、8、正n棱锥侧棱与底面所成的角为,侧面与底面所成的角为,tantan等于A、 B、 C、 D、9、一个简单多面体的各面都是三角形,且有6个顶点,则这个简单多面体的面数是A、4 B、6 C、8 D、1010、三棱锥PABC中,3条侧棱两两垂直,PA=a,PB=b,PC=c,ABC的面积为S,则P到平面ABC的距离为A、 B、 C、 D、11、三棱柱ABCA1B1C1的体积为V,P、Q分别为AA1、CC1上的点,且满足AP=C1Q,则四棱锥BAPQC的体积是A、 B、 C、 D、12、多面体ABCDEF中,已知面ABCD是边长为3的正方形,EFAB,EF=,EF与面AC的距离为2,则该多面体的体积为A、 B、5 C、6 D、(二) 填空题13、已知异面直线a与b所成的角是500,空间有一定点P,则过点P与a,b所成的角都是300的直线有_条。14、线段AB的端点到平面的距离分别为6cm和2cm,AB在上的射影AB的长为3cm,则线段AB的长为 _
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号