资源预览内容
第1页 / 共5页
第2页 / 共5页
第3页 / 共5页
第4页 / 共5页
第5页 / 共5页
亲,该文档总共5页全部预览完了,如果喜欢就下载吧!
资源描述
云南省云天化中学2020学年高二数学上学期周练61.已知椭圆的离心率为,右焦点为,斜率为1的直线与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为.()求椭圆G的方程;()求的面积. 2.如图,四棱锥中,底面为平行四边形.底面 .(I)证明: (II)设,求棱锥的高.3.设数列an(n=1,2,3,)的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.(1)求数列an的通项公式.(2)设数列的前n项和为Tn,求使得|Tn-1|成立的n的最小值.4.在中,角所对的边分别是.已知()求的值;()求的面积.参考答案1.【思路点拨】()利用a,b,c的关系及离心率求出a,b,代入标准方程;()联立直线方程与椭圆方程,然后利用根与系数的关系,设而不求,整体代入.【精讲精析】()由已知得,解得.又,所以椭圆G的方程为.(II)设直线的方程为,由得,.设A,B的坐标分别为,AB中点为,则.因为AB是等腰的底边,所以.所以PE的斜率,解得.此时方程为,解得,所以.所以.此时,点到直线AB:的距离,所以的面积.【思路点拨】第(1)问,通过证明平面证明时,可利用勾股定理,第(2)问,在中,可证边上的高即为三棱锥的高,其长度利用等面积法可求.【精讲精析】()因为, 由余弦定理得 从而BD2+AD2= AB2,故BDAD.又PD底面ABCD,可得BDPD. 所以BD平面PAD. 故PABD()过D作DEPB于E,由(I)知BCBD,又PD底面,所以BC平面PBD,而DE平面PBD,故DEBC,所以DE平面PBC由题设知PD=1,则BD=,PB=2,由DEPB=PDBD得DE=,即棱锥的高为.3.【解题指南】直接利用前n项和Sn与通项an的关系以及等差、等比数列的通项公式及求和公式解题.【解析】(1)当n2时,有an=Sn-Sn-1=2an-a1-(2an-1-a1)则an=2an-1(n2),=2(n2),则是以a1为首项,2为公比的等比数列.又由题意得2a2+2=a1+a322a1+2=a1+4a1a1=2,则an=2n(nN*)(2)由题意得(nN*),由等比数列求和公式得Tn=1-()n,|Tn-1|=|-()n|=()n,n=10时,210=1024,n=9时,29=512,所以|Tn-1|成立的n的最小值为10.4.【解题指南】(1)本题先求出sinA,再利用A,B之间的关系求出sinB,然后用正弦定理求出b.(2)本题可利用余弦定理求出c,再利用三角形面积公式求出三角形面积.【解析】:()由题意知:, , 由正弦定理得:()由余弦定理得: 又因为为钝角,所以,即, 所以
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号