资源预览内容
第1页 / 共10页
第2页 / 共10页
第3页 / 共10页
第4页 / 共10页
第5页 / 共10页
第6页 / 共10页
第7页 / 共10页
第8页 / 共10页
第9页 / 共10页
第10页 / 共10页
亲,该文档总共10页全部预览完了,如果喜欢就下载吧!
资源描述
上杭一中2019-2020学年第一学期12月考高二数学试卷 一、选择题(本大题共小题,每小题分,共分.每小题给出的四个选项中,有且只有一个是正确的,请将你认为正确答案序号填涂在答题卡相应位置上)1原命题“设、,若则”的逆命题、否命题中,真命题的个数 是( )A 0个B1个C2个D3个2.设是函数的导函数,的图象如图所示,则的图象最有可能的是( )3已知三点不共线,对平面外的任一点,下列条件中能确定点与点一定共面的是( )A BCD4.在区间-3,3上随机取一个数x,则x使不等式成立的概率为( )A. B. C. D. 5. 某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距抽取样本,将全体会员随机按1200编号,并按编号顺序平均分为40组(15号,610号,196200号).若第5组抽出的号码为22,则第1组至第3组抽出的号码依次是( )A. 3,8,13B. 2,7,12C. 3,9,15D. 2,6,126. “”是“”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件7. 点是抛物线上一动点,则点到点的距离与到直线的距离之和的最小值是( )A B C D 8. 如图长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成角的大小是( 学 ) A.600 B.300 C.450 D.9009设椭圆的离心率为e,右焦点为F(c,0),方程ax2bxc0的两个实根分别为x1和x2,则点P (x1,x2) ( )A必在圆x2y22内 B必在圆x2y22上C必在圆x2y22外 D以上三种情形都有可能10过双曲线的右顶点作轴的垂线与的一条渐近线相交于.若以的右焦点为圆心、半径为4的圆经过则双曲线的方程为( )A. B. C. D.11已知函数的图像与轴恰有两个公共点,则( )A-2或2B-9或3C-1或1D-3或112.已知圆O1:(x-2)2+y2=16和圆O2:x2+y2=r2(0r2),动圆M与圆O1、圆O2都相切,动圆圆心M的轨迹为两个椭圆,这两个椭圆的离心率分别为e1、e2(e1e2),则e1+2e2的最小值是( )A. 3+224B. 32C. 2D. 38二、填空题(本大题共小题,每小题分,共分.请将最简答案填写在答题卡相应位置上)13、从集合,中任意取出两个不同的数记作,则方程表示焦点在轴上的双曲线的概率是 14、已知a,b为单位向量,且ab=0,若,则_.15、在中,.如果一个椭圆通过、两点,它的一个焦点为点,另一个焦点在边上,则这个椭圆的焦距为 16、在平面直角坐标系中,P是曲线上的一个动点,则点P到直线x+y=0的距离的最小值是 三、解答题(本大题共小题,共分.解答应写出必要的文字说明、证明过程或演算步骤.)17. (本小题满分12分)已知,设命题p:关于x的不等式m,对任意实数x都成立;命题q:直线与抛物线有两个不同的交点。若命题“”为真命题,求m的取值范围。18(本小题满分12分).如图:正三棱柱ABCA1B1C1中,D是BC的中点,A A1=AB=1(1)求二面角BAB1D的余弦值;(2)求点C到平面AB1D的距离19(本小题12分)已知函数 (1)当时,求曲线在点处的切线方程;(2)当a时,求函数的单调区间;. 20(本小题满分12分)已知直线l:与抛物线 C:交于A、B两点,为坐标原点 . (1)求直线l和抛物线C的方程; (2)抛物线上一动点P从A到B运动时,求点P到直线l 的最大值,并求此时点P的坐标21. 某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.的分组企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:.22. (本小题满分12分) 如图,已知、分别是椭圆(ab0)的左、右焦点,过(2,0)与x轴垂直的直线交椭圆于点M,且。()求椭圆的标准方程;()已知点P(0,1),问是否存在直线l与椭圆交于不同两点A、B,且AB的垂直平分线恰好经过P点?若存在,求出直线l斜率的取值范围;若不存在,请说明理由。上杭一中2019-2020学年第一学期12月考高二数学试卷参考答案: 123456789101112ACDCBBDDAAAA二、填空题: 13. 14. 15. 16. .417. (本小题满分12分)解:由命题p知,关于x的不等式m对任意实数x都成立,则当m0时,不等式变为,不合题意。 当m0时,必须满足, 解得, 因此,当时,命题“p”是真命题,当时,“”是真命题。 直线与抛物线有两个不同的交点,联立消去x得。 令,解得。因此,当时,q是真命题。 “”为真命题,“”和“q”都为真命题, 可得,实数m的取值范围是。 18 (本小题满分12分)建立空间直角坐标系Dxyz,如图,(1)解:,设是平面AB1D的法向量,则,故;同理,可求得平面AB1B的法向量是 设二面角BAB1D的大小为,(2)解由(II)得平面AB1D的法向量为,取其单位法向量点C到平面AB1D的距离19(本小题12分)解(1)当时, 所以曲线在点处的切线方程(2) 1)当时,解,得,解,得所以函数的递增区间为,递减区间为在 2)时,令得或当时, ,在上,在上 函数的递增区间为,递减区间为 20(本小题满分12分)解:(1)由得, 设 则 = 所以解得 所以直线的方程为抛物线C的方程为 (2)由得, 设 , 到直线的距离为 因为,所以当时,max=, 此时 21解:(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为.产值负增长的企业频率为.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2),所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.22. 解:()连接,在中, 由椭圆的定义可知,。 又,从而, 椭圆的标准方程为。 ()由题意知,若AB的垂直平分线恰好经过P点,则应有。当l与x轴垂直时,不满足, 当l与x轴不垂直时,设直线l的方程为由,消去y得 , 令,AB的中点为,则,C(,), , 即,化简得, 结合得,即,解之得。综上所述,存在满足条件的直线l,且其斜率k的取值范围为
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号