资源预览内容
第1页 / 共59页
第2页 / 共59页
第3页 / 共59页
第4页 / 共59页
第5页 / 共59页
亲,该文档总共59页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
1 正弦和余弦(一)正弦和余弦(一) 一、素质教育目标一、素质教育目标 (一)知识教学点 使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都 固定这一事实 (二)能力训练点 逐步培养学生会观察、比较、分析、概括等逻辑思维能力 (三)德育渗透点 引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习 习惯 二、教学重点、难点二、教学重点、难点 1重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固 定的这一事实 2难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固 定的事实,关键在于教师引导学生比较、分析,得出结论 三、教学步骤三、教学步骤 (一)明确目标 1如图 6-1,长 5 米的梯子架在高为 3 米的墙上,则 A、B 间距离为多少 米? 2长 5 米的梯子以倾斜角CAB 为 30靠在墙上,则 A、B 间的距离为 多少? 2 3若长 5 米的梯子以倾斜角 40架在墙上,则 A、B 间距离为多少? 4若长 5 米的梯子靠在墙上,使 A、B 间距为 2 米,则倾斜角CAB 为多 少度? 前两个问题学生很容易回答这两个问题的设计主要是引起学生的回忆,并 使学生意识到,本章要用到这些知识但后两个问题的设计却使学生感到疑惑, 这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用同 时使学生对本章所要学习的内容的特点有一个初步的了解, 有些问题单靠勾股定 理或含 30角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类 问题, 关键在于找到一种新方法, 求出一条边或一个未知锐角, 只要做到这一点, 有关直角三角形的其他未知边角就可用学过的知识全部求出来 通过四个例子引出课题 (二)整体感知 1请每一位同学拿出自己的三角板,分别测量并计算 30、45、60 角的对边、邻边与斜边的比值 学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值程 度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长, 就可求出其他未知边的长 2请同学画一个含 40角的直角三角形,并测量、计算 40角的对边、 邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固 定的大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的 比值也是固定的吗? 这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了 整体感知,唤起学生的求知欲,大胆地探索新知 (三)重点、难点的学习与目标完成过程 1通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对 边、邻边与斜边的比值总是固定不变的”但是怎样证明这个命题呢?学生这时 的思维很活跃对于这个问题,部分学生可能能解决它因此教师此时应让学生 展开讨论,独立完成 2学生经过研究,也许能解决这个问题若不能解决,教师可适当引导: 3 若一组直角三角形有一个锐角相等,可以把其 顶点 A1,A2,A3重合在一起,记作 A,并使直角边 AC1,AC2,AC3落 在同一条直线上,则斜边 AB1,AB2,AB3落在另一条直线上这样同学们 能解决这个问题吗?引导学生独立证明:易知,B1C1B2C2B3C3, AB1C1AB2C2AB3C3, 形中,A 的对边、邻边与斜边的比值,是一个固定值 通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生 能力,进行了德育渗透 而前面导课中动手实验的设计,实际上为突破难点而设计这一设计同时起 到培养学生思维能力的作用 练习题为 2 3 60sin= 作了孕伏同时使学生知道任意锐角的对边与斜边的比 值都能求出来 (四)总结与扩展 1引导学生作知识总结:本节课在复习勾股定理及含 30角直角三角形的 性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它 的对边、邻边与斜边的比值也是固定的 教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考, 我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬 这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识 2扩展:当锐角为 30时,它的对边与斜边比值我们知道今天我们又发 现,锐角任意时,它的对边与斜边的比值也是固定的如果知道这个比值,已知 一边求其他未知边的问题就迎刃而解了看来这个比值很重要,下节课我们就着 4 重研究这个“比值”,有兴趣的同学可以提前预习一下通过这种扩展,不仅对 正、余弦概念有了初步印象,同时又激发了学生的兴趣 四、布置作业四、布置作业 本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预 习正余弦概念 五、板书设计五、板书设计 正弦和余弦正弦和余弦(二二) 一、素质教育一、素质教育 目标目标 (一)知识教学 点 使学生初步了 解正弦、 余弦概念; 能够较正确地用 sinA、 cosA 表示直 角三角形中两边的 比;熟记特殊角 30、45、60 角的正、余弦值, 并能根据这些值说 出对应的锐角度数 (二)能力训练点 逐步培养学生观察、比较、分析、概括的思维能力 (三)德育渗透点 渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点 二、教学重点、难点二、教学重点、难点 1教学重点:使学生了解正弦、余弦概念 第十四章 解直角三角形 一、锐角三角函数 证明:- 结论:- 练习:- 5 2教学难点:用含有几个字母的符号组 sinA、cosA 表示正弦、余弦;正 弦、余弦概念 三、教学步骤三、教学步骤 (一)明确目标 1引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边 与斜边的比值也是固定的” 2明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的 比值正弦和余弦 (二)整体感知 只要知道三角形任一边长,其他两边就可知 而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与 斜边的比值也固定这样只要能求出这个比值,那么求直角三角形未知边的问题 也就迎刃而解了 通过与“30角所对的直角边等于斜边的一半”相类比,学生自然产生想 学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象 (三)重点、难点的学习与目标完成过程 正弦、 余弦的概念是全章知识的基础, 对学生今后的学习与工作都十分重要, 因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函 数思想,又用含几个字母的符号组来表示,因此概念也是难点 在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做 正弦、余弦”如图 63: 请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能 力教师板书:在ABC 中,C 为直角,我们把锐角 A 的对边与斜边的比叫 做A 的正弦正弦, 记作 sinA, 锐角 A 的邻边与斜边的比叫做A 的余弦余弦, 记作 cosA 6 若把A 的对边 BC 记作 a,邻边 AC 记作 b,斜边 AB 记作 c,则 引导学生思考:当A 为锐角时,sinA、cosA 的值会在什么范围内?得结 论 0sinA1,0cosA1(A 为锐角)这个问题对于较差学生来说有些难 度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来 教材例 1 的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这 里不妨增问“cosA、cosB”,经过反复强化,使全体学生都达到目标,更加突 出重点 例 1 求出图 64 所示的 RtABC 中的 sinA、sinB 和 cosA、cosB 的值 7 学生练习 1 中 1、2、3 让每个学生画含 30、45的直角三角形,分别求 sin30、sin45、 sin60和 cos30、cos45、cos60这一练习既用到以前的知识,又巩固 正弦、 余弦的概念, 经过学习亲自动笔计算后, 对特殊角三角函数值印象很深刻 例 2 求下列各式的值: 为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题: (1)sin45+cos45; (2)sin30cos60; 在确定每个学生都牢记特殊角的三角函数值后,引导学生思考, “请大家观 察特殊角的正弦和余弦值, 猜测一下, sin20大概在什么范围内, cos50呢?” 这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新 8 的精神还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增 大而增大,余弦值随角度增大而减小”为查正余弦表作准备 (四)总结、扩展 首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念, 已知直角三角形的两边可求其锐角的正、余弦值知道任意锐角 A 的正、余弦 值都在 01 之间,即 0sinA1, 0cosA1(A 为锐角) 还发现 RtABC 的两锐角A、B,sinAcosB,cosAsinB正弦值 随角度增大而增大,余弦值随角度增大而减小” 四、布置作业四、布置作业 教材习题 14.1 中 A 组 3 预习下一课内容 五、板书设计五、板书设计 14.1 正弦和余弦(二) 一、概念: 三、例 1- 四、特殊角的正余弦值 - - - 二、范围: - 五、例 2 - 正弦和余弦正弦和余弦(三三) 一、素质教育目标一、素质教育目标 9 (一)知识教学点 使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关 系 (二)能力训练点 逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力 (三)德育渗透点 培养学生独立思考、勇于创新的精神 二、教学重点、难点二、教学重点、难点 1重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之 间的关系并会应用 2 难点: 一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用 三、教学步骤三、教学步骤 (一)明确目标 1复习提问 (1)、什么是A 的正弦、什么是A 的余弦,结合图形请学生回答因为正 弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教 学班还有多少人不清楚的,可以采取适当的补救措施 (2)请同学们回忆 30、45、60角的正、余弦值(教师板书) (3)请同学们观察,从中发现什么特征?学生一定会回答“sin30 cos60,sin45cos45,sin60cos30,这三个角的正弦值等于它们 余角的余弦值” 2导入新课 根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角 的余弦(正弦)值”这是否是真命题呢?引出课题 (二)、整体感知 关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过 30、45、60角的正弦、余弦值之间的
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号