资源预览内容
第1页 / 共29页
第2页 / 共29页
第3页 / 共29页
第4页 / 共29页
第5页 / 共29页
第6页 / 共29页
亲,该文档总共29页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
勾股定理的逆定理(1),回忆过去,1.直角三角形有哪些性质?,2.如何判断三角形是直角三角形?,古埃及人曾用下面的方法得到直角,按照这种做法真能得到一个直角三角形吗?,古埃及人曾用下面的方法得到直角:,用13个等距的结,把一根绳子分成等长的12段,然后以3个结,4个结,5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。,3,4,5,请同学们观察,这个三角形的三条边有什么关系吗?,下面的三组数分别是一个三角形的三边长a,b,c:,2.5,6,6.5; 6,8,10。,动手画一画,由上面几个例子你发现了什么吗?请以命题的 形式说出你的观点!,命题2,勾股定理的逆命题,勾股定理,互逆命题,3,4,5,A,C,B,3,4,古埃及人的做法:,ABC中, BC=3、 AC=4、AB=5,这两个三角形有什么关系?,全等,3,4,5,A,C,B,3,4,在 中根据勾股定理有, C=900, AB2= a2+b2, a2+b2=c2, AB 2=c2, AB =c, 边长取正值, ABC ABC(SSS), C= C=90,已知:在ABC中,AB=c BC=a CA=b 且a2+b2=c2,求证: ABC是直角三角形,证明:画一个ABC,使 C=90,BC=a, CA=b,在 ABC和 ABC中,则 ABC是直角三角形(直角三角形的定义),勾股定理的逆命题,A,C,B,证明:,勾股定理的逆命题,勾股定理,互逆命题,逆定理,定理,驶向胜利的彼岸,定理与逆定理,我们已经学习了一些互逆的定理,如: 勾股定理及其逆定理; 两直线平行,内错角相等;内错角相等,两直线平行.,如果一个定理的逆命题经过证明是真命题,那么它是一个定理,这两个定理称为互逆定理,其中一个定理称另一个定理的逆定理.,(1)两条直线平行,内错角相等 (2)如果两个实数相等,那么它们的平方相等 (3)如果两个实数相等,那么它们的绝对值相等 (4)全等三角形的对应角相等,说出下列命题的逆命题这些命题的逆命题成立吗?,逆命题: 内错角相等,两条直线平行. 成立,逆命题:如果两个实数的平方相等,那么这两个实数相等. 不成立,逆命题:如果两个实数的绝对值相等,那么这两个实数相等. 不成立,逆命题:对应角相等的两个三角形是全等三角形. 不成立,感悟: 原命题成立时, 逆命题有时成立, 有时不成立,一个命题是真命题,它逆命题却不一定是真命题.,例1 判断由a、b、c组成的三角形是不是直角三角形: (1) a15 , b 8 , c17,(2) a13 , b 15 , c14,分析:由勾股定理的逆定理,判断三角形是不是直角三角形,只要看两条较小边的平方和是否等于最大边的平方。,解:1528222564289 172289 15282172 这个三角形是直角三角形,例 2.在ABC中,a=15, b=17, c=8,求此三角形的面积。,为直角三角形,且B=90 ABC的面积为,8,15,17,A,B,C,下面以a,b,c为边长的三角形是不是直角三角形?如果是那么哪一个角是直角?,(1) a=25 b=20 c=15 _ _ ;,(2) a=13 b=14 c=15 _ _ ;,(4) a:b: c=3:4:5 _ _ ;,是,是,不是,是, A=900, B=900, C=900,(3) a=1 b=2 c= _ _ ;,像25,20,15,能够成为直角三角形三条边长的三个正整数,称为勾股数.,勾股定理的逆定理(2),例4: “远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。它们离开港口一个半小时后相距30海里。如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?,B,A、锐角三角形 B、直角三角形C、钝角三角形 D、等边三角形,1.,已知:如图,四边形ABCD中,B900,AB3,BC4,CD12,AD13,求四边形ABCD的面积?,S四边形ABCD=36,分析:先来判断a,b,c三边哪条最长,可以代m,n为满足条件的特殊值来试,m=5,n=4.则a=9,b=40,c=41,c最大。,ABC是直角三角形,1、请你写出三组勾股数; 2、一组勾股数的倍数一定是勾股数吗?为什么?,1、 已知a,b,c为ABC的三边,且 满足 a2+b2+c2+338=10a+24b+26c. 试判断ABC的形状.,2、ABC三边a,b,c为边向外作正方形,正三角形,以三边为直径作半圆,若S1+S2=S3成立,则,是直角三角形吗?,A,C,a,b,c,S1,S2,S3,B,A,B,C,a,b,c,S1,S2,S3,请谈谈你的收获,自主评价:,1、勾股定理的逆定理,2、什么叫做互逆命题、原命题与逆命题,3、什么称为互为逆定理。,勾股定理的逆命题,如果三角形的较长边的平方等于其它两条较短边的平方和,那么这个三角形是直角三角形。,已知:在ABC中,AB=c BC=a CA=b 且a2+b2=c2,求证: ABC是直角三角形,证明:画一个ABC,使 C=900,BC=a, CA=b,a,b,A,B,C,
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号