资源预览内容
第1页 / 共28页
第2页 / 共28页
第3页 / 共28页
第4页 / 共28页
第5页 / 共28页
第6页 / 共28页
第7页 / 共28页
第8页 / 共28页
第9页 / 共28页
第10页 / 共28页
亲,该文档总共28页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
,统计复习课,只有将数学应用于社会科学的研究之后, 才能使得文明社会的发展成为可控制的现实.,怀特,一 抽样方法,1.简单随机抽样,()抽签法,为了了解高一(1)班50名学生的视力状况,从中抽取10名学生进行检查如何抽取呢?通常使用抽签法,方法是:将20名学生从1到50进行编号,再制作到50的50个号签,把50个号签集中在一起并充分搅匀,最后随机地从中抽10个号签对编号与抽中的号签的号码相一致的学生进行视力检查一般地,用抽签法从个体个数为 N的总体中抽取一个容量为k的样本的步骤为:,说明:,1.抽样公平性原则等概率随机性;,2.抽签法适用与总体中个数N不大的情形.,1.将总体中的所有个体编号(号码可以从到 );,2.将到 这 个号码写在形状、大小相同的号签上 (号签可以用小球、卡片、纸条等制作);,3.将号签放在同一箱中,并搅拌均匀;,4.从箱中每次抽出个号签,并记录其编号,连续抽取次;,5.从总体中将与抽到的签的编号相一致的个体取出.,将总体中的N个个体编号时可以从0开始,例如当N=100时,,编号可以是00,01,02, ,99.这样,总体中的所有个体均可用两位 数字号码表示,便于使用随机数表,当随机地选定开始的数后,读数的方向可以向右,也可以向 左、向上、向下等由此可见,用随机数表法抽取样本的步骤是:,()对总体中的个体进行编号(每个号码位数一致);,()在随机数表中任选一个数作为开始;,()从选定的数开始按一定的方向读下去,得到的数码 若不在编号中,则跳过;若在编号中,则取出;如果得到 的号码前面已经取出,也跳过;如此继续下去,直到取满 为止;,()根据选定的号码抽取样本,小结:,1.抽样无放回;,2.抽样公平性;,3.抽签法,随机数表法简单的随机抽样.,第四步将编号为 , +10, +20, , +610 的个体抽出,组成样本,第三步在第一段000,001,002,009这十个编号中用简单随机抽样确定起始号码 ;,因为624的10约为62,624不能被62整除,为了保证“等距”分段,应先剔除人,2.系统抽样,例 某单位在岗职工共624人,为了调查工人用于上班途中的时间,决定抽取10的工人进行调查如何采用系统抽样方法完成这一抽样?,分析:,第一步将624名职工用随机方式进行编号;,解:,第二步从总体中剔除人(剔除方法可用随机数表法),将剩下的620名职工重新编号(分别为000,001,002,619),并分成62段;,系统抽样的步骤为:,()采用随机的方式将总体中的个体编号;,()将整个的编号按一定的间隔(设为k)分段,当 (N为总体中的个体数,n为样本容量)是整数时,k= ;当 不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数能被 整除,这时k= ,并将剩下的总体重新编号;,()在第一段中用简单随机抽样确定起始的个体编号l ;,()将编号为l , l +k,l +2k, l +(n-1)k的个体抽出,小结:,1.适用与总体中个体无明显的层次差异;,2.系统抽样等距抽样.,3.分层抽样,例某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为1200人,其中持各种态度的人数如下表所示:,电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?,分析:因为总体中人数较多,所以不宜采用简单随机抽样又由于持不同态度的人数差异较大,故也不宜用系统抽样方法,而以分层抽样为妥,解可用分层抽样方法,其总体容量为12000,“很喜爱”占,“喜爱”占,“一般”占,“不喜爱”占,因此,采用分层抽样的方法在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2435人、4567人、3926人和1072人中分别抽取12人、23人、20人和5人,一般地,当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比实施抽样,这种抽样方法叫分层抽样(stratified sampling),其中所分成的各个部分称为“层”,分层抽样的步骤是:,()将总体按一定标准分层;,()计算各层的个体数与总体的个体数的比;,()按各层个体数占总体的个体数的比确定各层应抽取的样本容量;,()在每一层进行抽样(可用简单随机抽样或系统抽样),说明:,1.适用与总体中个体有明显的层次差异,层次 分明的特点;,2.总体中个体数 N较大时,系统抽样,分层抽样 二者选其一.,以上我们学习了三种抽样方法,这些抽样方法的特点及适用范围可归纳如下:,例1下列问题中,采用怎样的抽样方法较为合理?()从台冰箱中抽取3台进行质量检查; ()某电影院有32排座位,每排有40个座位,座位号为140有一次报告会坐满了听众,报告会结束以后为听取意见,需留下32名听众进行座谈; ()某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本,分析,()总体容量比较小,用抽签法或随机数表法都很方便,()总体容量比较大,用抽签法或随机数表法比较麻烦由于人员没有明显差异,且刚好排,每排人数相同,可用系统抽样,()由于学校各类人员对这一问题的看法可能差异较大,故应采用分层抽样方法,例2.假设要考察某公司生产的500克袋状牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽样本时,先将800袋牛奶按000,001,799进行编号,如果从随机表第8行第18列的数开始向右读,请你依次写出最先检测的5牛奶的编号 (下面摘取了一随机数表的第7行至第9行),84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76, ,63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 62 58 79,73 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 0 13 42 99 66 02 79 54, ,二 总体分布的估计,例 为了了解一大片经济林的生长情况,随机测量其中的100株的底部周长,得到如下数据表(长度单位:cm):,()编制频率分布表;,()绘制频率分布直方图;,()估计该片经济林中底部周长小于100cm 的树木约占多少,周长不小于120cm 的树木约占多少,(4)绘制频率分布折线图;,(5)绘制概率分布曲线;,小结:,1.频率直方图中矩形条的面积= 组距=频率;,2.频率分布表 频率直方图 后者更直观 形象地反映样本的分布规律.,例 有同一型号的汽车100辆,为了解这种汽车每耗油1所行路程的情况,现从中随机抽出10辆在同一条件下进行耗油1所行路程试验,得到如下样本数据(单位:):13.7,12.7,14.4,13.8,13.3,12.5,13.5,13.6,13.1,13.4,并分组如下:,(1)完成上面频率分布表;,(2)根据上表在给定坐标系中画出频率分布直方图,并根据样本估计总体数据落在中的概率;,(3)据样本对总体的期望值进行估计。,10,10,三 总体特征数的估计,1.平均数,比较的标准越大越好.,2.方差,标准差,设一组样本数据 ,其平均数为 ,则称,为这个样本的方差,其算术平方根,为样本的标准差,分别简称样本方差、样本标准差,小结:,1.方差,标准差是用来刻画样本的稳定性;,2.比较的标准越小越好。,例1 下面是某校学生日睡眠时间的抽样频率分布表(单位:h),试估计该校学生的日平均睡眠时间,分析要确定这100名学生的平均睡眠时间,就必须计算其总睡眠时间由于每组中的个体睡眠时间只是一个范围,可以用各组区间的组中值近似地表示,解法总睡眠时间约为 6.255+6.7517+7.2533+7.7537+8.25+8.75=739(),故平均睡眠时间约为7.39,解法求组中值与对应频率之积的和 6.250.05+6.750.17+7.250.33+7.750.37 + 8.250.06+8.780.02=7.39() 答估计该校学生的日平均睡眠时间约为7.39,例2 甲、乙两种冬水稻试验品种连续5年的平均单位面积产量如下(单位:t/hm2 ),试根据这组数据估计哪一种水稻品种的产量比较稳定,解甲品种的样本平均数为,样本方差为,(9.8-10)2 + (9.9-10)2 +(10.1-10)2 + (10-10)2 +(10.2-10)2 =0.02,,乙品种的样本平均数也为,样本方差为,(9.4-10)2 + (10.3-10)2 +(10.8-10)2 + (9.7-10)2 +(9.8-10)2 =0.24,,因为0.240.02,所以,由这组数据可以认为甲种水稻的产量比较稳定,应用题,青年歌手大奖赛有10名选手参加,12名评委给出的评判分数如下表:,()确定歌手的名次;,()对评委的评判水平给出评价, 以便确定下次聘请的10名评委,本章回顾,本章介绍了从总体中抽取样本的常用方法,并通过实例,研究了如何利用样本对总体的分布规律、整体水平、稳定程度及相关关系等特性进行估计和预测,总体,抽样,分析,估计,简单随机抽样,系 统 抽 样,分 层 抽 样,样 本 分 布,样 本 特 征 数,总 体 分 布,总 体 特 征 数,当总体容量大或检测具有一定的破坏性时,可以从总体中抽取适当的样本,通过对样本的分析、研究,得到对总体的估计,这就是统计分析的基本过程而用样本估计总体就是统计思想的本质,要准确估计总体,必须合理地选择样本,我们学习的是最常用的三种抽样方法获取样本数据后,将其用频率分布表、频率直方图、频率折线图或茎叶图表示后,蕴含于数据之中的规律得到直观的揭示运用样本的平均数可以对总体水平作出估计,用样本的极差、方差(标准差)可以估计总体的稳定程度,对两个变量的样本数据进行相关性分析,可发现存在于现实世界中的回归现象用最小二乘法研究回归现象,得到的线性回归方程可用于预测和估计,为决策提供依据,总之,统计的基本思想是从样本数据中发现统计规律,实现对总体的估计,
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号