资源预览内容
第1页 / 共39页
第2页 / 共39页
第3页 / 共39页
第4页 / 共39页
第5页 / 共39页
第6页 / 共39页
第7页 / 共39页
第8页 / 共39页
第9页 / 共39页
第10页 / 共39页
亲,该文档总共39页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
5. 污水的好氧生物处理,5.1 污水生物处理的基本理论,5.2 污水的好氧生物处理,5.3 生物膜法,5.4 污水的自然生物处理,教学目的、要求: 掌握微生物的代谢与污水的生物处理,微生物的生长条件和生长规律、污水的可生化性 熟悉污水中的微生物,生化反应动力学,生物处理方法的分类。,5.1 污水生物处理的基本理论,一、污水中的微生物 所谓微生物是一些肉眼不能看见,只能凭借显微镜才能观察到的单细胞及多细胞生物,微生物在自然界中分布极广,种类繁多。在处理废水中常见的微生物,可以分为以下几类。,细菌、真菌、藻类、原生动物和后生洞 物共生于水体中,它们之间存在一定的营养关系。,二、微 生 物 的 新 陈 代 谢,新陈代谢:微生物从污水中摄取营养物质,通过复杂的生物化学反应合成自身细胞和排出废物,这种维持生命活动和生长繁殖而进行的生化反应过程。,分解代谢:分解复杂营养物质,降解高能化合物,获得能量。 合成代谢:通过一系列的生化反应,将营养物质转化为复杂的细胞成分,吸收能量,机体制造自身。,微 生 物 的 呼 吸,一切生物时刻都在进行着呼吸,没有呼吸就没 有生命。,呼吸作用的生物现象: 呼吸作用中发生能量转换:供细胞合成、其他生命活动,多余的能量以热量形式释放。 通过呼吸作用,复杂有机物逐步转化为简单物质。呼吸作用过程中吸收和同化各种营养物质。,微 生 物 的 呼 吸 类 型,微生物的呼吸指微生物获取能量的生理功能,好氧呼吸是营养物质进入好氧微生物细胞后,通过一系列氧化还原反应获得能量的过程。 有分子氧参与的生物氧化, 反应的最终受氢体是分子氧。 依好氧微生物的类型不同,被其氧化的底物不同,氧化产物也不同。好氧呼吸有异养型微生物呼吸和自养型微生物呼吸两种 。,好 氧 呼 吸,异养型微生物 异养型微生物以有机物为底物(电子供体),其终点产物为二氧化碳、氨和水等无机物,同时放出能量。如下式所示: 异氧微生物又可分为化能异氧微生物和光能异氧微生物。 化能异氧微生物:氧化有机物产生化学能而获得能量的微生物。 光能异氧微生物:以光为能源,以有机物为供氢体还原CO2,合成有机物的一类厌氧微生物。 有机废水的好氧生物处理,如活性污泥法、生物膜法、污泥的好氧消化等属于这种类型的呼吸。,2.自养型微生物 自养型微生物以无机物为底物(电子供体),其终点产物也是无机物,同时放出能量。,大型合流污水沟道和污水沟 道存在该式所示的生化反应,生物脱氮工艺中的生物硝化过程,厌氧呼吸是在无分子氧(O2)的情况下进行的生物氧化。 厌氧呼吸的受氢体不是分子氧。在厌氧呼吸过程中,底物氧化不彻底,最终产物除二氧化碳和水以外,还有一些较原来底物简单的化合物。这种化合物还含有相当的能量,故释放能量较少。 如有机污泥的厌氧消化过程中产生的甲烷,是含有相当能量的可燃气体。 厌氧呼吸按反应过程中的最终受氢体的不同,可分为发酵和无氧呼吸。,厌 氧 呼 吸,1.发酵 指供氢体和受氢体都参与有机化合物的生物氧化作用,最终受氢体无需外加,就是供氢体的分解产物(有机物)。 这种生物氧化作用不彻底,最终形成的还原性产物,是比原来底物简单的有机物,在反应过程中,释放的自由能较少,故厌氧微生物在进行生命活动过程中,为了满足能量的需要,消耗的底物要比好氧微生物的多。 例如,葡萄糖的发酵过程: 总反应式:,2.无氧呼吸 是指以无机氧化物,如NO3-,NO2-,SO42-,S2O32-,CO2等代替分子氧,作为最终受氢体的生物氧化作用。 在反硝化作用中,受氢体为NO3-,可用下式所示: 总反应式: 在无氧呼吸过程中,供氢体和受氢体之间也需要细胞色素等中间电子传递体,并伴随有磷酸化作用,底物可被彻底氧化,能量得以分级释放,故无氧呼吸也产生较多的能量用于生命活动。但由于有些能量随着电子转移至最终受氢体中,故释放的能量不如好氧呼吸的多。,好氧呼吸、无氧呼吸、发酵三种呼吸方式,获得的能量水平不同, 如下表所示。,好氧生物处理是在有游离氧(分子氧)存在的条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法。微生物利用废水中存在的有机污染物(以溶解状与胶体状的为主),作为营养源进行好氧代谢。这些高能位的有机物质经过一系列的生化反应,逐级释放能量,最终以低能位的无机物质稳定下来,达到无害化的要求,以便返回自然环境或进一步处置。 废水好氧生物处理的最终过程可用下图表示。,污水的好氧生物处理,图示表明,有机物被微生物摄取后,通过代谢活动,约有1/3被分解、稳定,并提供其生理活动所需的能量;约有2/3被转化,合成为新的原生质(细胞质),即进行微生物自身生长繁殖。,好氧生物处理的反应速度较快,所需的反应时间较短,故处理构筑物容积较小。且处理过程中散发的臭气较少。所以,目前对中、低浓度的有机废水,或者说BOD5浓度小于500mg/L的有机废水,基本上采用好氧生物处理法。 在废水处理工程中,好氧生物处理法有活性污泥法和生物膜法两大类。,污水的好氧生物处理,污水的厌氧生物处理是在没有游离氧存在的条件下,兼性细菌与厌氧细菌降解和稳定有机物的生物处理方法。在厌氧生物处理过程中,复杂的有机化合物被降解、转化为简单的化合物,同时释放能量。,在这个过程中,有机物的转化分为三部分进行:部分转化为CH4,这是一种可燃气体,可回收利用;还有部分被分解为CO2、H2O、NH3、H2S等无机物,并为细胞合成提供能量;少量有机物被转化、合成为新的原生质的组成部分。由于仅少量有机物用于合成,故相对于好氧生物处理法,其污泥增长率小得多。,由于废水厌氧生物处理过程不需另加氧源,故运行费用低。此外,它还具有剩余污泥量少、可回收能量(CH4)等优点。 其主要缺点是反应速度较慢,反应时间较长,处理构筑物容积大等。为维持较高的反应速度,需维持较高的温度,就要消耗能源。 对于有机污泥和高浓度有机废水(一般BOD52000mg/L)可采用厌氧生物处理法。,污水的厌氧生物处理,微生物的生长规律一般是以生长曲线来反映。,按微生物生长速率,其生长可分为四个生长期,三、微生物的生长条件和生长规律,如果活性污泥被接种到与原来生长条件不同的废水中(营养类型发生变化,污泥培养驯化阶段),或污水处理厂因故中断运行后再运行,则可能出现停滞期。这种情况下,污泥需经过若干时间的停滞后才能适应新的废水,或从衰老状态恢复到正常状态。停滞期是否存在或停滞期的长短,与接种活性污泥的数量、废水性质、生长条件等因素有关。 当废水中有机物浓度高,且培养条件适宜,则活性污泥可能处在对数生长期。处于对数生长期的污泥絮凝性较差,呈分散状态,镜检能看到较多的游离细菌,混合液沉淀后其上层液混浊,含有机物浓度较高,活性强沉淀不易,用滤纸过滤时,滤速很慢。 当污水中有机物浓度较低,污泥浓度较高时,污泥则有可能处于静止期,处于静止期的活性污泥絮凝性好,混合液沉淀后上层液清澈,以滤纸过滤时滤速快。处理效果好的活性污泥法构筑物中,污泥处于静止期。 当污水中有机物浓度较低,营养物明显不足时,则可能出现衰老期。处于衰老期的污泥松散,沉降性能好,混合液沉淀后上清液清澈,但有细小泥花,以滤纸过滤时,滤速快。,停 滞 期,对 数 期,静 止 期,衰 亡 期,在污水生物处理过程中,如果条件适宜,活性污泥的增长过程与纯种单细胞微生物的增殖过程大体相仿。但由于活性污泥是多种微生物的混合群体, 其生长受废水性质、浓度、水温、pH、溶解氧等多种环境因素的影响,因此,在处理构筑物中通常仅出现生长曲线中的某一两个阶段。处于不同阶段时的污泥,其特性又很大的区别。,在废水生物处理中,微生物是一个混合群体,它们也有一定的生长规律。有机物多时,以有机物为食料的细菌占优势,数量最多;当细菌很多时,出现以细菌为食料的原生动物;而后出现以细菌及原生动物为食料的后生动物,如右图所示。,微 生 物 的 生 长 环 境,影 响 微 生 物 生 长 的 环 境 因 素,微生物的营养,温 度,pH,溶 解 氧,有 毒 物 质,微生物的组成,细胞分子式:C5H7O2N(有机部分),细胞分子式:C60H87O23N12P(考虑磷),一般估算营养比例: BODNP 100 5 1,(1)水:组成部分,代谢过程的溶剂。细菌约80%的成分为水分。 (2)碳源:碳素含量占细胞干物质的50左右,碳源主要构成微生物细胞的含碳物质和供给微生物生长、繁殖和运动所需要的能量,一般污水中含有足够碳源。 (3)氮源:提供微生物合成细胞蛋白质的物质。 (4)无机元素:主要有磷、硫、钾、钙、镁等及微量元素。作用:构成细胞成分,酶的组成成分,维持酶的活性,调节渗透压,提供自养型微生物的能源。 磷:核酸、磷脂、ATP转化。硫:蛋白质组成部分,好氧硫细菌能源。钾:激活酶。钙:稳定细胞壁,激活酶。镁:激活酶,叶绿素的重要组成部分 (5)生长因素:氨基酸、蛋白质、维生素等。,微生物的营养,微 生 物 的 生 长 环 境,影 响 微 生 物 生 长 的 环 境 因 素,微生物的营养,温 度,pH,溶 解 氧,有 毒 物 质,微 生 物 的 生 长 环 境,影 响 微 生 物 生 长 的 环 境 因 素,微生物的营养,温 度,pH,溶 解 氧,有 毒 物 质,微 生 物 的 生 长 环 境,影 响 微 生 物 生 长 的 环 境 因 素,微生物的营养,温 度,pH,溶 解 氧,有 毒 物 质,微 生 物 的 生 长 环 境,影 响 微 生 物 生 长 的 环 境 因 素,微生物的营养,温 度,pH 值,溶 解 氧,有 毒 物 质,生物化学反应是一种以生物酶为催化剂的化学反应。 污水生物处理中,人们总是创造合适的环境条件去得到希望的反应速度。 生化反应动力学目前的研究内容: (1)底物降解速率与底物浓度、生物量、环境因素等方面的关系; (2)微生物增长速率与底物浓度、生物量、环境因素等方面的关系; (3)反应机理研究,从反应物过渡到产物所经历的途径。,四、生化反应动力学,在生化反应中,反应速度是指单位时间里底物的减少量、最终产物的增加量或细胞的增加量。在废水生物处理中,是以单位时间里底物的减少或细胞的增加来表示生化反应速度。 图中的生化反应可以用下式表示: 即 该式反映了底物减少速率和细胞增长速率之间的关系,是废水生物处理中研究生化反应过程的一个重要规律。,反 应 速 度,及,式中:反应系数 又称产率系数,mg(生物量)/mg(降解的底物)。,一切生化反应都是在酶的催化下进行的。这种反应亦可以说是一种酶促反应或酶反应。酶促反应速度受酶浓度、底物浓度、pH、温度、反应产物、活化剂和抑制剂等因素的影响。 在有足够底物又不受其他因素影响时,则酶促反应速度与酶浓度成正比。 当底物浓度在较低范围内,而其他因素恒定时,这个反应速度与底物浓度成正比,是一级反应。 当底物浓度增加到一定限度时,所有的酶全部与底物结合后,酶反应速度达到最大值,此时再增加底物的浓度对速度就无影响,是零级反应,但各自达到饱和时所需的底物浓度并不相同,甚至差异有时很大。,浓度对酶反应速度的影响,微生物增长速度和微生物本身的浓度、底物浓度之间的关系是废水生物处理中的一个重要课题。有多种模式反映这一关系。当前公认的是莫诺特方程式: 式中:cS限制微生物增长的底物浓度,mg/L; 微生物比增长速度,即单位生物量的增长速度。 式中:cX微生物浓度,mg/L; max 的最大值,底物浓度很大,不再影响微生物 的增长速度时的值; KS饱和常数。,莫诺特(Monod)方程式,底物降解速度;,底物比降解速度。,以及 代入式 得: 式中:q和qmax为底物的比降解速度及其最大值;cs为底物浓度;Ks为饱和常数。,1951年由霍克来金(Heukelekian)等人提出了:,微生物增长与底物降解的基本关系式,式中:,Y产率系数; Kd内源呼吸(或衰减)系数; cX 反
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号