资源预览内容
第1页 / 共26页
第2页 / 共26页
第3页 / 共26页
第4页 / 共26页
第5页 / 共26页
第6页 / 共26页
第7页 / 共26页
第8页 / 共26页
第9页 / 共26页
第10页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
3.3.3函数的最大(小)值与导数,f (x)0,f (x)0,复习:一、函数单调性与导数关系,如果在某个区间内恒有 ,则 为常数.,设函数y=f(x) 在 某个区间 内可导,,f(x)为增函数,f(x)为减函数,二、函数的极值定义,设函数f(x)在点x0附近有定义,,如果对X0附近的所有点,都有f(x)f(x0),则f(x0) 是函数f(x)的一个极大值, 记作y极大值= f(x0);,如果对X0附近的所有点,都有f(x)f(x0),则f(x0) 是函数f(x)的一个极小值,记作y极小值= f(x0);,函数的极大值与极小值统称 为极值.,使函数取得极值的点x0称为极值点,求解函数极值的一般步骤: (1)求函数的定义域 (2)求函数的导数f (x) (3)求方程f (x) =0的根 (4)用方程f (x) =0的根,顺次将函数的定义域分成若干个开区间,并列成表格 (5)由f (x)在方程f (x) =0的根左,右的符号,来判断f(x)在这个根处取极值的情况,左正右负极大值, 左负右正极小值,在社会生活实践中,为了发挥最大的经济效益,常常遇到如何能使用料最省、产量最高,效益最大等问题,这些问题的解决常常可转化为求一个函数的最大值和最小值问题,函数在什么条件下一定有最大、最小值?他们与函数极值关系如何?,新 课 引 入,极值是一个局部概念,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小。,知识回顾,一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:,1最大值:,(1)对于任意的xI,都有f(x)M; (2)存在x0I,使得f(x0) = M,那么,称M是函数y=f(x)的最大值,2最小值:,一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:,(1)对于任意的xI,都有f(x)M; (2)存在x0I,使得f(x0) = M,那么,称M是函数y=f(x)的最小值,观察下列图形,你能找出函数的最值吗?,在开区间内的连续函数不一定有最大值与最小值.,在闭区间上的连续函数必有最大值与最小值,如何求出函数在a,b上的最值?,一般的如果在区间,a,b上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值。,观察右边一个定义在区间a,b上的函数y=f(x)的图象:,问题在于如果在没有给出函数图象的情况下,怎样才能判断出f(x3)是最小值,而f(b)是最大值呢?,(2) 将y=f(x)的各极值与f(a)、f(b)(端点处) 比较,其中最大的一个为最大值,最小的 一个最小值.,求f(x)在闭区间a,b上的最值的步骤:,(1) 求f(x)在区间(a,b)内极值(极大值或极小值);,新授课,求函数的最值时,应注意以下几点:,(1)函数的极值是在局部范围内讨论问题,是一个局部概念,而函数的最值是对整个定义域而言,是在整体范围内讨论问题,是一个整体性的概念.,(2)闭区间a,b上的连续函数一定有最值.开区间(a,b)内的可导函数不一定有最值,但若有唯一的极值,则此极值必是函数的最值.,(3)函数在其定义域上的最大值与最小值至多各有一个, 而函数的极值则可能不止一个,也可能没有极值,并且极大值(极小值)不一定就是最大值(最小值).,题型:求函数的最大值和最小值,解:f(x)=6+12x-x3 f (x)=3x2+12 令f (x)=0,解得x=2或x=2,当 x 变化时, f (x) , f(x)的变化情况如下表:,例2:求函数y=x4-2x2+5在区间-2,2上的最大值与最小值.,解:,令 ,解得x=-1,0,1.,当x变化时, 的变化情况如下表:,从上表可知,最大值是13,最小值是4.,题型:求函数的最大值和最小值,练习:函数 y = x + 3 x9x在 4 , 4 上的最大值为 ,最小值为 .,分析: (1) 由 f (x)=3x +6x9=0,(2) 区间4 , 4 端点处的函数值为 f (4) =20 , f (4) =76,得x1=3,x2=1,函数值为f (3)=27, f (1)=5,76,-5,当x变化时,y 、 y的变化情况如下表:,比较以上各函数值,可知函数在4 , 4 上的最大值为 f (4) =76,最小值为 f (1)=5,练习:,求下列函数在给定区间上的最大值与最小值:,54,-54,22,-10,2,-18,a,a-40,典型例题,反思:本题属于逆向探究题型: 其基本方法最终落脚到比较极值与端点函数值大小上,从而解决问题,往往伴随有分类讨论。,拓展提高题,1、我们知道,如果在闭区间【a,b】上函数y=f(x)的图像是一条连续不断的曲线,那么它必定有最大值和最小值;那么把闭区间【a,b】换成开区间(a,b)是否一定有最值呢? 如下图:,不一定,2、函数f(x)有一个极值点时,极值点必定是最值点。,3、 如果函数f(x)在开区间(a,b)上只有一个极值点,那么这个极值点必定是最值点。,有两个极值点时,函数有无最值情况不一定。,动手试试,4、函数y=x3-3x2,在2,4上的最大值为( ) (A) -4 (B) 0 (C) 16 (D) 20,C,1. 求函数f(x)=x2-4x+6在区间1,5内的极值与最值,故函数f(x) 在区间1,5内的极小值为3,最大值为11,最小值为2,解法二:,f (x)=2x-4,令f (x)=0,即2x-4=0,,得x=2,-,+,3,11,2,选做题:,解法一:将二次函数f(x)=x2-4x+6配方,利用二次函数单调性处理,2、,解,令,解得,x,0,(0, ),( , ),+,-,+,0,0,( , ),0,应用,( 2009年天津(文)21T ),答:(1)斜率为1;,(2),(04浙江文21)(本题满分12分) 已知a为实数, ()求导数 ; ()若 ,求 在-2,2上的最大值和最小值; ()若 在(-,-2和2,+)上都是递增的,求a的取值范围。,一.是利用函数性质 二.是利用不等式 三.是利用导数,求函数最值的一般方法,小结:,
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号