资源预览内容
第1页 / 共32页
第2页 / 共32页
第3页 / 共32页
第4页 / 共32页
第5页 / 共32页
第6页 / 共32页
第7页 / 共32页
第8页 / 共32页
第9页 / 共32页
第10页 / 共32页
亲,该文档总共32页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第六节 空间直角坐标系,三年1考 高考指数: 1.了解空间直角坐标系,会用空间直角坐标表示点的位置; 2.会推导空间两点间的距离公式.,1.本节内容属了解内容,一般不单独命题 2.本节内容的重点是空间点的坐标的确定及空间两点间的距离; 3.通过求点的坐标考查空间想象能力,通过求两点间的距离考查计算能力.,1.空间直角坐标系及有关概念 (1)空间直角坐标系,Oxyz,x轴,y轴,z轴,(2)右手直角坐标系的含义 当右手拇指指向x轴的正方向,食指指向y轴的正方向时,中指 指向_的正方向. (3)空间中点M的坐标 空间中点M的坐标常用有序实数组(x,y,z)来表示,记作M(x,y,z),其中x叫做点M的_,y叫做点M的_,z 叫做点M的_. 建立了空间直角坐标系后,空间中的点M和有序实数组(x,y,z) 可建立一一对应的关系.,z轴,横坐标,纵坐标,竖坐标,【即时应用】 (1)思考:空间直角坐标系中的坐标平面把空间分成几部分? 提示:三个坐标平面把空间分为八部分. (2)xOz平面内点的坐标的特点是_. 【解析】点在xOz平面内,故点在y轴上的射影一定是坐标原点,其纵坐标为0,横坐标、竖坐标不确定. 答案:纵坐标为0,(3)在空间直角坐标系中,点M(-5,3,1)关于x轴的对称点坐标为_. 【解析】关于x轴的对称点坐标,横坐标不变,其余坐标变为相反数. 答案:(-5,-3,-1),2.空间两点间的距离 (1)设点A(x1,y1,z1),B(x2,y2,z2), 则|AB|=_ 特别地,点P(x,y,z)与坐标原点O的距离为|OP|=_. (2)设点A(x1,y1,z1),B(x2,y2,z2)是空间中两点,则线段AB的中 点坐标为_.,【即时应用】 (1)思考:在平面内到一定点的距离等于定长的点的轨迹是圆, 那么在空间中到一个定点的距离等于定长的点的轨迹是什么呢? 提示:是以定点为球心,以定长为半径的球面. (2)已知空间两点A(2,0,4),B(-6,2,-2),则线段AB的中点到原 点的距离为_. 【解析】由中点坐标公式可得线段AB的中点为(-2,1,1),故到 原点的距离为 答案:,(3)已知点P(1,1,1),其关于xOz平面的对称点为P,则 =_. 【解析】由题意得P(1,-1,1), 答案:2,求空间点的坐标 【方法点睛】1.建立恰当坐标系的原则 (1)合理利用几何体中的垂直关系,特别是面面垂直; (2)尽可能地让相关点落在坐标轴或坐标平面上.,2.求空间中点P的坐标的方法 (1)过点P作与x轴垂直的平面,垂足在x轴上对应的数即为点P的横坐标;同理可求纵坐标、竖坐标. (2)从点P向三个坐标平面作垂线,所得点P到三个平面的距离等于点P的对应坐标的绝对值,再判断出对应数值的符号,进而可求得点P的坐标.,【例1】(1)空间直角坐标系中,点P(2,3,4)在x轴上的射影的坐标为_. (2)已知正三棱柱ABC-A1B1C1的各棱长均为2,以A为坐标原点建立适当的空间直角坐标系,求其各顶点的坐标. 【解题指南】(1)空间直角坐标系中,点在x轴的射影的坐标满足横坐标相同,纵、竖坐标均为零.(2)注意空间直角坐标系的建立以及三棱柱底面三角形角的大小.,【规范解答】(1)点P(2,3,4)在x轴上的射影的横坐标与点P相同,纵坐标、竖坐标均为0.故射影坐标为(2,0,0). 答案:(2,0,0) (2)以A点为坐标原点,AC、AA1所在直线分别 为y轴、z轴建立空间直角坐标系,如图所示. 设AC的中点是D,连接BD,则BDy轴,且 A(0,0,0),B( 1,0),C(0,2,0), A1(0,0,2),B1( 1,2),C1(0,2,2).,【互动探究】本例(2)中若以AC的中点D为坐标原点,以DB,DC所在直线分别为x轴、y轴建立空间直角坐标系,试写出各顶点的坐标. 【解析】建立空间直角坐标系,如图所示,则 A(0,-1,0),B( 0,0),C(0,1,0), A1(0,-1,2),B1( 0,2),C1(0,1,2).,【反思感悟】 1.建立坐标系时,常常利用或构造两两垂直的三条直线来解题,特别是所给图形中的垂直关系,更要合理利用. 2.对同一几何体,建立的坐标系不同,所得点的坐标也不同为方便起见常将尽量多的点建在坐标轴上.,【变式备选】如图所示,长方体ABCD-A1B1C1D1中,AB=3,BC=2,A1A=1,试写出: (1)长方体的所有顶点的坐标; (2)棱A1B1的中点M的坐标.,【解析】(1)依题意知,各顶点的坐标分别为 D(0,0,0),A(2,0,0),B(2,3,0),C(0,3,0), D1(0,0,1),A1(2,0,1),B1(2,3,1),C1(0,3,1). (2)A1B1的中点M的坐标为 即,空间中点的对称问题 【方法点睛】空间直角坐标系中点的对称规律 已知点P(x,y,z),则点P关于点、线、面的对称点坐标为:,【例2】如图,已知长方体ABCD-A1B1C1D1的对称中心在坐标原点,交于同一顶点的三个面分别平行于三个坐标平面,顶点A(-2,-3,-1),求其他七个顶点的坐标. 【解题指南】由题意知,长方体的各顶点关于原点O和三个坐标平面及三条坐标轴具有对称性,据此可写出其他七个顶点的坐标.,【规范解答】由题意得,点B与点A关于xOz面对称,故点B的坐标为(-2,3,-1);点D与点A关于yOz面对称,故点D的坐标为(2,-3,-1);点C与点A关于z轴对称,故点C的坐标为(2,3,-1);由于点A1,B1,C1,D1分别与点A,B,C,D关于xOy面对称,故点A1,B1,C1,D1的坐标分别为A1(-2,-3,1),B1(-2,3,1),C1(2,3,1), D1(2,-3,1).,【反思感悟】1.求对称点坐标要看点是关于轴对称还是关于坐标平面对称,明确哪些坐标发生了变化,哪些没变,一定要记清变化的规律 2.记清各类对称点坐标间的特征关系是正确解题的关键.,【变式训练】已知在矩形ABCD中,A(4,1,3),B(2,-5,1),C(3,7,-5),求顶点D的坐标. 【解析】由题意知,点A(4,1,3),C(3,7,-5)的中点为M( 4,-1).设点D的坐标为(x,y,z),则 故点D的坐标为(5,13,-3).,空间两点间的距离 【方法点睛】1.求空间两点间距离的步骤 (1)建立坐标系,写出相关点的坐标; (2)利用公式求出两点间的距离. 2.两点间距离公式的应用 (1)求两点间的距离或线段的长度; (2)已知两点间距离,确定坐标中参数的值; (3)根据已知条件探求满足条件的点的存在性.,【例3】(1)已知点B是点A(3,7,-4)在xOz平面上的射影,则|OB|等于( ) (A)(9,0,16) (B)25 (C)5 (D)13 (2)如图所示,以棱长为a的正方体的三条棱所在的直线为坐标轴建立空间直角坐标系,点P在正方体的 体对角线AB上,点Q在棱CD上当点P为 对角线AB的中点,点Q在棱CD上运动时, 探究|PQ|的最小值.,【解题指南】(1)根据空间点在xOz平面上的射影的特点及距离公式求解.(2)确定点P、Q的坐标,利用两点间的距离公式得到|PQ|,然后利用函数知识解决. 【规范解答】(1)选C.由题意得点B的坐标为(3,0,-4),故 (2)因为B(0,0,a),A(a,a,0),P为AB的中点, 所以P( ).,又点Q在棱CD上运动,所以可设Q(0,a,z0), 其中z00,a, 故 因此当 时,|PQ|的最小值为,【互动探究】本例(2)中,若将“当点P为对角线AB的中点”改为“当点P在对角线AB上运动时”,其余条件不变,则结果如何? 【解析】显然,当点P在AB上运动时,点P到坐标平面xOz、yOz的距离相等,且P在第一象限, 所以可设P(t,t,a-t),t0,a, 又Q在CD上运动,,所以可设Q(0,a,z0),z00,a. 所以 = 故当 时,|PQ|有最小值为,【反思感悟】1.解此类问题的关键是确定点的坐标,常出现的错误是将坐标求错. 2.利用空间两点间的距离公式,可以求两点间的距离或某线段的长度,只要建立恰当的坐标系,通过简单的坐标运算即可解决.,【变式备选】已知点A(1,a,-5)、B(2a,7,2)(aR),则|AB|的最小值是( ) 【解析】选B. 当a=-1时,|AB|取最小值,【易错误区】求点的坐标时忽略解的讨论致误 【典例】(2012临沂模拟)已知点P在z轴上,且满足|OP|=1(O为坐标原点),则点P到点A(1,1,1)的距离为_. 【解题指南】先确定点P的坐标,然后利用两点间的距离公式求解即可.,【规范解答】设点P的坐标为(0,0,z), 由|OP|=1得 =|z|=1,故z=1. 当z=1时,点P的坐标为(0,0,1), 当z=-1时,点P的坐标为(0,0,-1), 答案:,【阅卷人点拨】通过阅卷数据分析与总结,我们可以得到以下误区警示和备考建议:,1.(2012合肥模拟)已知点A(-3,0,-4),点A关于原点的对称点为B,则|AB|等于( ) (A)12 (B)9 (C)25 (D)10 【解析】选D.由题意知点B的坐标为(3,0,4),故,2.(2012福州模拟)在坐标平面xOy上,到点A(3,2,5),B(3,5,1)距离相等的点有( ) (A)1个 (B)2个 (C)不存在 (D)无数个 【解析】选D.在坐标平面xOy内,可设点P(x,y,0), 由题意得 解得 所以符合条件的点有无数个.,3.(2012扬州模拟)正方体不在同一表面上的两个顶点为 A(-1,2,-1),B(3,-2,3),则正方体的体积为( ) (A)8 (B)27 (C)64 (D)128 【解析】选C.设正方体的棱长为a,根据条件则有 解得a=4, 所以体积为43=64.,4.(2012滨州模拟)如图,已知在长方体ABCD-A1B1C1D1中,AB=AA1=2,BC=3,M为AC1与CA1的交点,则M点的坐标为_. 【解析】由题意得M为AC1的中点. 又A(0,0,0),C1(2,3,2),故M(1, ,1). 答案:M(1, ,1),
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号