资源预览内容
第1页 / 共10页
第2页 / 共10页
第3页 / 共10页
第4页 / 共10页
第5页 / 共10页
第6页 / 共10页
第7页 / 共10页
第8页 / 共10页
第9页 / 共10页
第10页 / 共10页
亲,该文档总共10页全部预览完了,如果喜欢就下载吧!
资源描述
视频数据的基本压缩编码技术与MPEG系列标准1 Huffman编码、算术编码、行程编码的原理、算法及适用范围。1.1 Huffman编码HUFFMAN编码又称哈夫曼编码,是一种可变长编码方式,是由美国数学家David Huffman创立的,是二叉树的一种特殊转化形式。编码的原理是:将使用次数多的代码转换成长度较短的代码,而使用次数少的可以使用较长的编码,并且保持编码的唯一可解性。Huffman算法的最根本的原则是:累计的(字符的统计数字*字符的编码长度)为最小,也就是权值(字符的统计数字*字符的编码长度)的和最小。由于Huffman编码需要扫描两次,第一次是统计数字,第二次是编码写文件,大大影响了速度,因此有人发明了enhanced Huffman aglorithm。这种算法只扫描一遍文件,动态产生Huffman树,即每读n个字节就重新编码一次Huffman树,以达到提高速度的目的。在解码的过程中使用动态还原技术。Huffman编码是Huffman树的一个应用。Huffman编码应用广泛,如JPEG中就应用了Huffman编码。 1.2 算术编码算术编码是图像压缩的主要算法之一。 是一种无损数据压缩方法,也是一种熵编码的方法。和其它熵编码方法不同的地方在于,其他的熵编码方法通常是把输入的消息分割为符号,然后对每个符号进行编码,而算术编码是直接把整个输入的消息编码为一个数,一个满足(0.0 n N (04-01-1) 式中k N表示x1,x2, x N的时序在xk之前,为所谓因果型(Causal)预测,否则为非因果型预测。 接收端把接收到的量化后的预测误差ek 与本地算出的xk相加,即得恢复信号xk。如果没有传输误差,则接收端重建信号xk与发送端原始信号xk之间的误差为: xk - x k = x k - ( xk + ek ) = ( xk - xk ) - ek = ek - ek = qk (04-01-2) 这正是发送端量化器产生的量化误差,即整个预测编码系统的失真完全由量化器产生。因此,当xk已经是数字信号时,如果去掉量化器,使ek = ek,则qk = 0,即xk = xk 。这表明,这类不带量化器的DPCM系统也可用于无损编码。但如果量化误差qk 0,则xk xk,为有损编码。 如果预测方程式(04-01-2)的右方是各个xi的线性函数,即 N x k = ai(k) x i k N (04-01-3) i=1 即得常用的线性预测,又称线性预测编码(LPC,Linear Predictive Coding)。LPC在语音处理中得到广泛应用,并在此基础上发展了许多算法,典型的有:多脉冲线性预测编码(MPLPC),规则脉冲激励编码(RPE),码激励线性预测(CELP),代数激励线性预测(ACELP),矢量和激励线性预测(VSELP),QCELP(Qualcomm CELP,变速率CELP),低延时码激励线性预测(LD-CELP),共轭结构代数激励线性预测(CS-ACELP),混合激励线性预测(MELP),间隔同步更新码激励线性预测(PSI-CELP),松弛码激励线性预测(RCELP),残差激励线性预测(RELP),规则脉冲激励长时预测(RPE-LTP)等。 在DPCM中,“1位量化”的特殊情况称为增量调制(调制)。为了能够正确恢复被压缩的信号,不仅在接收端有一个与发送端相同的预测器,而且其输入信号也要相同(都是xk,而不是xk),动作也与发送端的预测器环路(即发送端本地的反量化和解码部分)完全相同。 在图像信号中应用DPCM时,用作预测的像素和被预测的像素可以在同一行,也可以在不同行(同一帧),甚至在不同帧,分别称为一维预测、二维预测和三维预测。声音信号中的预测只是一维预测。 DPCM的优点是算法简单,容易硬件实现,缺点是对信道噪声很敏感,会产生误差扩散。即某一位码出错,对图像一维预测来说,将使该像素以后的同一行各个像素都产生误差;而对二维预测,该码引起的误差还将扩散到以下的各行。这样,将使图像质量大大下降。同时,DPCM的压缩率也比较低。随着变换编码的广泛应用,DPCM的作用已很有限。2.3最佳线性预测如果对一个随机效应(如个体育种值)的预测具有线性(预测量是样本观察值的线性函数)、无偏(预测量的数学期望等于随机效应本身的数学期望)和预测误差方差最小等统计学性质,则称其为最佳线性无偏预测。2.4自适应预测编码预测参数的最佳化依赖信源的特征,要得到最佳预测参数显然是一件繁琐的工作。而采用固定的预测参数往往又得不到较好的性能。为了能使性能较佳,又不致于有太大的工作量,可以采用自适应预测。 为了减少计算工作量,预测参数仍采用固定的,但此时有多组预测参数可供选择,这些预测参数根据常见的信源特征求得。编码时具体采用哪组预测参数需根据特征来自适应地确定。为了自适应地选择最佳参数,通常将信源数据分区间编码,编码时自动地选择一组预测参数,使该实际值与预测值的均方误差最小。随着编码区间的不同,预测参数自适应地变化,以达到准最佳预测。2.5自适应帧间预测帧间预测编码是利用视频图像帧间的相关性,即时间相关性,来达到图像压缩的目的,广泛用于普通电视、会议电视、视频电话、高清晰度电视的压缩编码。 在图像传输技术中,活动图像特别是电视图像是关注的主要对象。活动图像是由时间上以帧周期为间隔的连续图像帧组成的时间图像序列,它在时间上比在空间上具有更大的相关性。大多数电视图像相邻帧间细节变化是很小的,即视频图像帧间具有很强的相关性,利用帧所具有的相关性的特点进行帧间编码,可获得比帧内编码高得多的压缩比。对于静止图像或活动很慢的图像,可以少传一些帧,如隔帧传输,未传输的帧,利用接收端的帧存储器中前一帧的数据作为该帧数据,对视觉没有什么影响。因为人眼对图像中静止或活动慢的部分,要求有较高的空间分辨率,而对时间分辨率的要求可低些。这种方法叫帧重复方法,广泛应用于视频电话、视频会议系统中,其图像帧速率一般为115帧/秒。 采用预测编码的方法消除序列图像在时间上的相关性,即不直接传送当前帧的像素值,而是传送x和其前一帧或后一帧的对应像素x 之间的差值,这称为帧间预测。当图像中存在着运动物体时,简单的预测不能收到好的效果,例如图象的当前帧与前一帧的背景完全一样,只是小球平移了一个位置,如果简单地以第k-1帧像素值作为k帧的预测值,则在实线和虚线所示的圆内的预测误差都不为零。如果已经知道了小球运动的方向和速度,可以从小球在k-1帧的位置推算出它在k帧中的位置来,而背景图像(不考虑被遮挡的部分)仍以前一帧的背景代替,将这种考虑了小球位移的k-1帧图像作为k帧的预测值,就比简单的预测准确得多,从而可以达到更高的数据压缩比。这种预测方法称为具有运动补偿的帧间预测。 具有运动补偿的帧间预测编码是视频压缩的关键技术之一,它包括以下几个步骤:首先,将图像分解
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号