资源预览内容
第1页 / 共29页
第2页 / 共29页
第3页 / 共29页
第4页 / 共29页
第5页 / 共29页
第6页 / 共29页
第7页 / 共29页
第8页 / 共29页
第9页 / 共29页
第10页 / 共29页
亲,该文档总共29页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
单方程计量经济学模型理论与方法,Theory and Methodology of Single-Equation Econometric Model,第二章 经典单方程计量经济学模型:一元线性回归模型,回归分析概述 一元线性回归模型的基本假设 一元线性回归模型的参数估计 一元线性回归模型检验 一元线性回归模型预测 实例,2.1 回归分析概述,一、变量间的关系及回归分析的基本概念,二、总体回归函数(PRF),三、随机扰动项,四、样本回归函数(SRF),一、变量间的关系及回归分析 的基本概念,1、变量间的关系,确定性关系或函数关系:研究的是确定性现象非随机变量间的关系。,统计依赖或相关关系:研究的是非确定性现象随机变量间的关系。,对变量间统计依赖关系的考察主要是通过相关分析(correlation analysis)或回归分析(regression analysis)来完成的。 相关分析适用于所有统计关系。 相关系数(correlation coefficient) 正相关(positive correlation) 负相关(negative correlation) 不相关(non-correlation) 回归分析仅对存在因果关系而言。,注意: 不存在线性相关并不意味着不相关。 存在相关关系并不一定存在因果关系。 相关分析对称地对待任何(两个)变量,两个变量都被看作是随机的。 回归分析对变量的处理方法存在不对称性,即区分应变量(被解释变量)和自变量(解释变量),前者是随机变量,后者不一定是。,2、回归分析的基本概念,回归分析(regression analysis)是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。 其目的在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值。 两类变量; 被解释变量(Explained Variable)或因变量(Dependent Variable)。 解释变量(Explanatory Variable)或自变量(Independent Variable)。,回归分析构成计量经济学的方法论基础,其主要内容包括: 根据样本观察值对经济计量模型参数进行估计,求得回归方程; 对回归方程、参数估计值进行显著性检验; 利用回归方程进行分析、评价及预测。,二、总体回归函数Population Regression Function, PRF,1、条件均值(conditional mean),例2.1.1:一个假想的社区有99户家庭组成,欲研究该社区每月家庭消费支出Y与每月家庭可支配收入X的关系。 即如果知道了家庭的月收入,能否预测该社区家庭的平均月消费支出水平。 为达到此目的,将该99户家庭划分为组内收入差不多的10组,以分析每一收入组的家庭消费支出。,由于不确定因素的影响,对同一收入水平X,不同家庭的消费支出不完全相同; 但由于调查的完备性,给定收入水平X的消费支出Y的分布是确定的,即以X的给定值为条件的Y的条件分布(Conditional distribution)是已知的,例如:P(Y=561|X=800)=1/4。 因此,给定收入X的值Xi,可得消费支出Y的条件均值(conditional mean)或条件期望(conditional expectation):E(Y|X=Xi)。 该例中:E(Y | X=800)=605,描出散点图发现:随着收入的增加,消费“平均地说”也在增加,且Y的条件均值均落在一根正斜率的直线上。,2、总体回归函数,在给定解释变量Xi条件下被解释变量Yi的期望轨迹称为总体回归线(population regression line),或更一般地称为总体回归曲线(population regression curve)。 相应的函数称为(双变量)总体回归函数(population regression function, PRF)。,含义:回归函数(PRF)说明被解释变量Y的平均状态(总体条件期望)随解释变量X变化的规律。 函数形式:可以是线性或非线性的。 例2.1.1中,将居民消费支出看成是其可支配收入的线性函数时:,为线性函数。其中,0,1是未知参数,称为回归系数(regression coefficients)。,三、随机扰动项Stochastic Disturbance,总体回归函数说明在给定的收入水平Xi下,该社区家庭平均的消费支出水平。 但对某一个别的家庭,其消费支出可能与该平均水平有偏差。 称为观察值围绕它的期望值的离差(deviation),是一个不可观测的随机变量,又称为随机干扰项(stochastic disturbance)或随机误差项(stochastic error)。,例2.1.1中,给定收入水平Xi ,个别家庭的支出可表示为两部分之和: 该收入水平下所有家庭的平均消费支出E(Y|Xi),称为系统性(systematic)或确定性(deterministic)部分; 其他随机或非确定性(nonsystematic)部分i。,称为总体回归函数(PRF)的随机设定形式。表明被解释变量除了受解释变量的系统性影响外,还受其他因素的随机性影响。由于方程中引入了随机项,成为计量经济学模型,因此也称为总体回归模型(PRM)。,随机误差项主要包括下列因素: 在解释变量中被忽略的因素的影响; 影响不显著的因素 未知的影响因素 无法获得数据的因素 变量观测值的观测误差的影响; 模型关系的设定误差的影响; 其它随机因素的影响。,四、样本回归函数Sample Regression Function, SRF,问题:能从一次抽样中获得总体的近似的信息吗?如果可以,如何从抽样中获得总体的近似信息?,问:能否从该样本估计总体回归函数PRF?,答:能,例2.2:在例2.1的总体中有如下一个样本,,总体的信息往往无法掌握,现实的情况只能是在一次观测中得到总体的一个样本。,核样本的散点图(scatter diagram):,散点图近似于一条直线,画一条直线以尽好地拟合该散点图,由于样本取自总体,可以该线近似地代表总体回归线。该线称为样本回归线(sample regression lines)。,记样本回归线的函数形式为:,称为样本回归函数(sample regression function,SRF)。,这里将样本回归线看成总体回归线的近似替代,则,注意:,样本回归函数的随机形式/样本回归模型:,同样地,样本回归函数也有如下的随机形式:,由于方程中引入了随机项,成为计量经济模型,因此也称为样本回归模型(sample regression model)。,回归分析的主要目的: 根据样本回归函数SRF,估计总体回归函数PRF。,注意:这里PRF可能永远无法知道。,即,根据,估计,
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号