资源预览内容
第1页 / 共80页
第2页 / 共80页
第3页 / 共80页
第4页 / 共80页
第5页 / 共80页
第6页 / 共80页
第7页 / 共80页
第8页 / 共80页
第9页 / 共80页
第10页 / 共80页
亲,该文档总共80页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第7章 非线型系统分析,控制系统在不同程度上都存在着非线性。有些系统可通过在工作点附近线性化来处理,但当系统包含有本质非线性特性时,就不能用线性化的方法处理。非线性系统与线性系统有本质的差别,非线性系统不满足叠加原理,它的稳定性不仅取决于控制系统的固有结构和参数,而且与系统的初始条件与输入信号有关。,第7章 非线性系统分析,内容提要,第7章 非线型系统分析,非线性系统的瞬态响应有一种特殊运动自持振荡,它是一种稳定的周期运动,振荡频率和幅值由系统结构和参数确定。非线性系统的分析方法有相平面法和描述函数法,相平面法是一种图解分析法,描述函数法是一种近似分析法。最后介绍了基于SIMULINK的非线性系统分析方法。,第7章 非线型系统分析,非线性系统与线性系统的区别,相平面的基本概念,相轨迹,极限环,描述函数的基本思想,描述函数的定义和求取,描述函数法分析非线性系统的自持振荡,非线性系统的校正。,知 识 要 点,第7章 非线型系统分析,7.1 常见非线性特性 7.2 相平面法 7.3 线性系统的相轨迹 7.4 非线性系统的相平面分析 7.5 描述函数法 小 结,目 录,第7章 非线型系统分析,静态非线性特性中,死区特性、饱和特性、继电特性、间隙特性是最常见的,也是最简单。,一个单输入单输出静态非线性特性的数学描述为:,7.1 常见非线性特性,7.1.1 死区特性,死区特性常常是由放大器、传感器、执行机构的不灵敏区造成的。实际的死区特性一般,第7章 非线型系统分析,如图7-1中的点划线所示,为了分析的方便,我们将它用图7-1 中的三段直线(实线)来近似,并称之为理想死区特性。理想型死区特性的的数学描述为:,死区特性可能给控制系统带来不利影响,它会使控制的灵敏度下降,稳态误差加大;死区特性也可能给控制系统带来有利的影响,有些系统人为引入死区以提高抗干扰能力。,第7章 非线型系统分析,图 71 死区特性,图7-2 饱和特性,第7章 非线型系统分析,可以说,任何实际装置都存在饱和特性,因为它们的输出不可能无限增大,磁饱和就是一种饱和特性。实际的饱和特性一般如图7-2 中的点划线所示,为了分析的方便,我们将它用图7-2 中的三段直线来近似,并称之为理想饱和特性。 理想饱和特性的数学描述为:,7.1.2 饱和特性,(7-2),第7章 非线型系统分析,继电特性顾名思义就是继电器所具有的特性, 继电特性有双位特性如图7-3(a)和(b),三位特性如图7-3(c)等,图7-3(b)(c)的继电特性还带有滞环。当然,不限于继电器,其它装置如果具有类似的非线性特性,我们也称之为继电特性,比如:电磁阀、斯密特触发器等。 分析继电特性有十分重要的意义,因为采用继电器、电磁阀等元件的的控制系统比比皆是,例如大多数家用电冰箱、空调就是继电器控制系统。,7.1.3 继电特性,第7章 非线型系统分析,图7-3 几种典型的继电特性,图7-3(a)所示继电特性的数学描述为:,第7章 非线型系统分析,图(c)所示继电特性的数学描述为:,第7章 非线型系统分析,图(b)所示继电特性的数学描述由读者自行导出。,第7章 非线型系统分析,传动机构的间隙也是控制系统中常见的非线性特性,齿轮传动是典型的间隙特性,图7-4(a)表示齿轮传动原理,图7-4(b)表示主动轮位移与从动轮位移的关系。设主动轮与从动轮间的最大间隙为2b,那么当主动轮改变方向时,主动轮最大要运动2b从动轮才能跟随运动。间隙特性类似于线性系统的滞后环节,但不完全等价,它对控制系统的动态、稳态特性都不利。设齿轮传动速比为,则图7-4间隙特性的数学描述为:,7.1.4 间隙特性,第7章 非线型系统分析,图7-4 间隙特性,返回,式中,为常数,它等于主动轮改变方向时的值。,第7章 非线型系统分析,相平面法是庞加莱(Poincare)1885年首先提出的,本来它是一种求解二元一阶非线性微分方程组的图解法,两个变量构成的直角坐标系称为相平面,方程组的解在相平面上的图象称为相轨迹。 这里是将相平面法用于分析一阶尤其是二阶非线性控制系统,并形成了一种特定的相平面法,它对弄清非线性系统的稳定性、稳定域等基本属性,解释极限环等特殊现象,起到了直观形象的作用。,7.2 相平面法,第7章 非线型系统分析,因为绘制两维以上的相轨迹是十分困难的,所以相平面法对于二阶以上的系统几乎无能为力,但是,如果我们将相平面概念推广到到抽象空间,就得到维状态空间以后再专门介绍。下面讨论相平面和相轨迹的基本概念。,考察二阶非线性时不变微分方程:,7.2.1 相平面的基本概念,为了引入相平面法,将二阶微分方程改写成二元一阶微分方程组:,第7章 非线型系统分析,微分方程组(7-6)有两个变量: x可以看作广义位移, 可以看作广义速度。 一般,直接对微分方程(7-5)求解,可以得到该系统的时间解 x(t),还可以作出x(t)与t的关系图时间响应曲线。,第7章 非线型系统分析,如果我们对微分方程组(7-6)求解,可以得到解x(t)和 ,如果我们取 x 和 为坐标,以时间 t 为参变量,则系统的每一时刻的状态均对应于该平面上的一点,当 t 变化时,这一点在 平面上绘出的曲线,表征了系统的运动过程,这个曲线就是相轨迹。我们用一个二阶线性时不变系统来体验一下相平面和相轨迹。,第7章 非线型系统分析,例7-1 考虑二阶系统: 将它写成微分方程组:,两式相除得到:,第7章 非线型系统分析,即:,两边积分得:,在相平面上绘出的相轨迹如图7-5(a)所示椭圆,如果取遍所有的初始值,就会得到无数一环套一环的椭圆称为相轨迹场,相轨迹场布满了整个相平面,相轨迹场从全局上展示了动态系统的运动过程,图(a)只绘出了相轨迹场中的2根相轨迹。当 xo=0 时,响应曲线如图(b)。,第7章 非线型系统分析,图7-5 例7-1的相轨迹与时间响应,7.2.2 相轨迹图,绘制相轨迹图有多种办法,概括起来有如下几类: 第一类:手工绘制概略图。概略图就象相轨迹的,第7章 非线型系统分析,素描,它是根据相轨迹的基本特征、特殊点、特殊线等信息而随手画出的草图,它虽然在具体细节上缺乏精度,但却能提供许多重要的定性结论。 第二类:手工图解绘制近似图。在计算机未得到广泛应用的年代,人们研究出好几种手工近似作图法,如等倾线法、法等。这些手工作图法要绘出有一定精度的相轨迹图是十分繁琐的,如今已没有多大实用价值。 第三类:计算机绘制精确图。借助计算机数值解法以及SIMULINK等软件绘制相轨迹图。,第7章 非线型系统分析,相轨迹的基本特征有:,1)奇点,对于二阶系统,相平面上满足 且 的点叫做奇点,记作 。对照方程(7-6)知, 奇点座标 是代数方程 的解,显然奇点一定在轴上。,第7章 非线型系统分析,对于二阶系统, 和 就是速度和加速度均为零,也就意味着不再运动,所以,奇点又称平衡点。相平面上任何其它点,都叫普通点。奇点又分稳定奇点和不稳定奇点,稍后将讨论。,第7章 非线型系统分析,2)相轨迹切线斜率,由方程(7-6)知,相轨迹上任一点 的切线斜率为: 某点的切线斜率就是相轨迹通过该点的运动方向,前面提到的等倾线就是相轨迹场上所有切线斜率等于某一常数的点的连线。,第7章 非线型系统分析,3)相轨迹图形特征,如果微分方程(7-6)满足解的存在性和唯一性条件,那么,相轨迹(场)图一定有如下基本特征: 1)任一普通点有且只有一条相轨迹通过(解的存在性和唯一性); 2)相轨迹必垂直通过轴 3)轴上方的相轨迹从左向右运动,轴下方的相轨迹从右向左运动。,第7章 非线型系统分析,例7-2 作出下列二阶系统的相轨迹,将它写成微分方程组:,容易求出奇点为(0,0)。,第7章 非线型系统分析,图7-6 例7-2的根轨迹,ABCDO对应初始条件为 EFO对应初始条件为。,从相轨迹图可以直观地看到:所有的相轨迹都最终收敛到奇点(0,0),这说明系统是渐近稳定的;可以证明,每一条相轨迹都是向心螺旋线,这说明系统的运动过程是衰减振荡的。,返回,第7章 非线型系统分析,研究二阶线性系统相轨迹的意义主要在两个方面:一是许多非线性特性可以近似为分段线性的,如死区特性、饱和特性、继电特性等,而分段线性系统的相轨迹可以由几段线性系统相轨迹连接而成;二是大多数非线性系统在奇点附近的相轨迹,与其在奇点附近的线性化系统的相轨迹十分接近。,7.3 线性系统的相轨迹,第7章 非线型系统分析,考虑用下列二阶微分方程描述二阶线性系统:,其中, 为常数。将它写成微分方程组:,7.3.1 二阶线性系统的相轨迹,第7章 非线型系统分析,容易求出奇点为:,可见,当 且 时,奇点为座标原点(0,0),当 且 时的奇点为 轴上的 点,当 时奇点为整个 轴。二阶系统(7-8)的特征根为:,第7章 非线型系统分析,显然,当取不同值时,特征根在根平面上的分布也不同,响应曲线和相轨迹的形态也不同。,返回,第7章 非线型系统分析,7.4 非线性系统的相平面分析,非线性系统相平面分析的关键是绘出相轨迹图,有了相轨迹图,我们就可以得到系统稳定性、稳定域、振型、稳态误差等方面的结论。我们也可以绘出不同初始条件、不同输入、不同系统参数所对应的相轨迹图,研究其中的规律。我们还可以绘出加进某种校正环节后的相轨迹图,研究非线性系统的校正。当然,相平面分析是有局限性的,比如参数的改变只能取几个离散值,校正环节不能使系统阶次高于2阶等等。,第7章 非线型系统分析,为了介绍相平面法基本原理,本节主要讨论一类最为简单的动态非线性系统。系统的结构如图7-8 所示,其显著特点是:系统具有静态非线性环节和动态线性环节的分离结构,且静态非线性环节是分段线性的,动态线性环节为一阶或二阶。,图7-8 具有分离结构的非线性系统,第7章 非线型系统分析,分析图7-8 所示非线性系统的具体方法是:先将静态非线性特性分为几个线性段,划分出每段对应的相平面分区;然后在每个分区按线性系统绘出相轨迹;最后将各分区的相轨迹进行衔接就得到整个非线性系统的相轨迹。,图7-8 中,如果非线性特性为式(7-2)所描述的饱和特性,线性部分的方程为: 联列式(7-2)和(7-13)得到整个系统的数学模型为:,第7章 非线型系统分析,7.4.1 阶跃函数,现在研究不同的输入函数作用下系统的相轨迹与性能:,(1)阶跃函数 ,因为 ,系统 的分区域方程简化为:,第7章 非线型系统分析,区域2的奇点为(0,0),当 时是稳定焦点,当 时是稳定节点,区域1属于表7-2的类型10,区域3属于表7-2的类型11。,设 ,式(7-15) 具体化为:,第7章 非线型系统分析,(2)斜坡函数r(t)=Vt ,因为 ,这时系统的分区域方程为:,7.4.2 斜坡函数,第7章 非线型系统分析,区域2的奇点为(V/Kk,0),当4KTk1时是稳定焦点,当4KTk1时是稳定节点,区域1的相轨迹属于表7-2的类型10或类型11。,固定T=1,K=4,k=1,g=0.2具体化为:,第7章 非线型系统分析,接下来研究相轨迹与的关系,在分三种情况来分析:,情况一:VKkg(0.8),比如取V=1.2,这时区域2的相轨迹应收敛到稳定焦点(0.3,0), 但(0.3,0)不在区域2范围内,故称为之虚焦点。绘出系统的相轨迹场如图7-9(b), 显然,每一条相轨迹的座标都趋向无穷大,即稳态误差为无穷大。,第7章 非线型系统分析,情况二:VKkg,比如取V=0.4,这时区域2有稳定焦点(0.1,0)且在区域2范围内,故称为之实焦点。绘出系统的相轨迹场如图7-9(c), 显然,所有相轨迹相收敛到稳定焦点(0.1,0),即稳态误差为0.1。 情况三:V=Kkg,这时区域2有稳定焦点(0.2,0)在区域2的边缘,仍为实焦点。绘出系统的相轨迹场如图7-9(d), 显然,相轨迹最终收敛到x轴的0.2,),这种情况比较特殊。,第7章 非线型系统分析,图7-
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号