资源预览内容
第1页 / 共33页
第2页 / 共33页
第3页 / 共33页
第4页 / 共33页
第5页 / 共33页
第6页 / 共33页
第7页 / 共33页
第8页 / 共33页
亲,该文档总共33页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
第11章 VAR模型和VEC模型 重点内容: 向量自回归理论 VAR模型的建立 Johansen协整检验 VEC模型的建立,一、向量自回归(VAR)模型 1.向量自回归理论,向量自回归模型可以用来预测相关联的经济时间序列系统,并分析随机扰动对变量系统的动态冲击,进一步解释经济冲击对经济变量所产生的影响。 滞后阶数为p的VAR模型表达式为 yt=A1 yt-1 +A2 yt-2 + Ap yt-p+B xt + t 其中,yt为k维内生变量向量;xt为d维外生变量向量;t是k维误差向量A1,A2,Ap,B是待估系数矩阵。,一、向量自回归(VAR)模型 1.向量自回归理论,滞后阶数为p的VAR模型表达式还可以表述为 即 上式称为非限制性向量自回归(Unrestricted VAR)模型,是滞后算子L的k k 的参数矩阵。 当行列式detA(L)的根都在单位圆外时,不含外生变量的非限制性向量自回归模型才满足平稳性条件。,一、向量自回归(VAR)模型 2.结构VAR模型(SVAR),结构VAR是指在模型中加入了内生变量的当期值,即解释变量中含有当期变量,这是与VAR模型的不同之处。 下面以两变量SVAR模型为例进行说明。 xt=b10 + b12zt +11xt-1 +12 zt-1 + xt zt=b20 + b21xt +21xt-1 +22 zt-1 + zt 这是滞后阶数p=1的SVAR模型。其中,xt和zt均是平稳随机过程;随机误差项xt和zt是白噪声序列,并且它们之间不相关。系数b12表示变量的zt的变化对变量xt的影响;21表示xt-1的变化对zt的滞后影响。该模型同样可以用如下向量形式表达,即 B0 yt= 0 + 1 yt-1 + t,一、向量自回归(VAR)模型 3. VAR模型的建立,选择“Quick”|“Estimate VAR”选项,将会弹出下图所示的对话框。 该对话框包括三个选项卡,分别是“Basics”、“Cointegration”和“VEC Restrictions”, 后两个选项卡在VEC模型操 作中使用。系统默认是“Basics” 选项卡。,一、向量自回归(VAR)模型 3. VAR模型的建立,在“VAR Type”中有两个选项: “Unrestricted VAR”建立的是无约束的向量自回归模型,即 VAR模型的简化式; “Vector Error Correction”建立的是误差修正模型。 “Estimation Sample”的编辑框中输入的是样本区间,当工作文件建立好后,系统会自动给出样本区间。 “Endogenous Variables”中输入的是内生变量。 “Exogenous Variables”中输入的是外生变量,系统默认情况下将常数项c作为外生变量。 “Lag Intervals for Endogenous”中指定滞后区间,一、向量自回归(VAR)模型 4. VAR模型的检验,VAR模型的滞后结构检验 (1)AR根的图与表 如果VAR模型所有根模的倒数都小于1,即都在单位圆内,则该模型是稳定的;如果VAR模型所有根模的倒数都大于1,即都在单位圆外,则该模型是不稳定的。如果被估计的VAR模型不稳定,则得到的结果有些是无效的。 在VAR对象的工具栏中选择“View”|“Lag Structure”|“AR Roots Table/ AR Roots Graph”选项,得到AR根的表和图。,一、向量自回归(VAR)模型 4. VAR模型的检验,VAR模型中AR根的图,VAR模型的滞后结构检验 (1)AR根的图与表,一、向量自回归(VAR)模型 3. VAR模型的建立,VAR模型的滞后结构检验 (2)Granger因果检验 Granger因果检验的 原假设是 H0:变量x不能Granger引起变量y 备择假设是 H1:变量x能Granger引起变量y 在EViews软件操作中,选择VAR对象工具栏中的“View”|“Lag Structure”|“Granger Causality/Block Exogeneity Tests”选项,可得到检验结果 。,一、向量自回归(VAR)模型 3. VAR模型的建立,VAR模型的滞后结构检验 (2)Granger因果检验 右图的检验结果为: 在5%的显著性水平下, 变量log(ex)能Granger引 起变量log(ms),即拒绝 原假设;但变量log(ms) 不能Granger引起变量 log(ex),即接受原假设。,一、向量自回归(VAR)模型 3. VAR模型的建立,VAR模型的滞后结构检验 (3)滞后排除检验 滞后排除检验(Lag Exclusion Tests) 是对VAR模型中的每一阶数的 滞后进行排除检验。如右图所示。 第一列是滞后阶数, 第二列和第三列是方程的2统计量, 最后一列是联合的2统计量。,一、向量自回归(VAR)模型 3. VAR模型的建立,VAR模型的滞后结构检验 (4)滞后阶数标准 选择VAR对象工具栏中的“View”|“Lag Structure”|“Lag Length Criteria”选项,在弹出的对话框中输入最大滞后阶数,然后单击“OK”按钮即可得到检验结果。,二、脉冲响应函数,脉冲响应函数(IRF,Impulse Response Function)分析方法可以用来描述一个内生变量对由误差项所带来的冲击的反应,即在随机误差项上施加一个标准差大小的冲击后,对内生变量的当期值和未来值所产生的影响程度。 在EViews软件操作中,选择VAR对象工具栏中的“View”|“Impulse Response”选项,或者直接点击VAR对象工具栏中的“Impulse”功能键即可得到脉冲响应函数的设定对话框。,二、脉冲响应函数,在脉冲响应函数的设定对话框中有两个选项卡: 一个是“Display”, 一个是“Impulse Definition”。 系统默认下打开的是“Display”选项卡。 其中,“Display Format”包含三种显示形式,“Table”表格形式,“Multiple Graphs”多个图形式,“Combined Graphs”组合图形式。系统默认下是“Multiple Graphs”选项。,二、脉冲响应函数,“Display Information”中输入冲击变量(Impulses)和脉冲响应变量(Responses)。这里可以输入内生变量的名称,也可以输入变量的序号。 在“Periods”中输入显示的最长时期。“Accumulated Responses”为累积响应。对于稳定的VAR模型,脉冲响应函数应趋于0,累积响应趋于非0常数。,三、方差分解,基本思想: 方差分解的基本思想是,把系统中的全部内生变量(k个)的波动按其成因分解为与各个方程新息相关联的k个组成部分,从而得到新息对模型内生变量的相对重要程度。 在EViews软件操作中,选择VAR对象工具栏中的“View”|“Variance Decomposition”选项,弹出对话框。其部分内容设定与脉冲响应函数相同。当改变VAR模型中的变量顺序时,基于Cholesky因子的方差分解会有改变。,四、Johansen协整检验 1、Johansen协整理论,在VAR(p)模型中,设变量y1t, y2t,ykt均是非平稳的一阶单整序列,即ytI(1)。xt是d维外生向量,代表趋势项、常数项等, yt=A1 yt-1 +A2 yt-2 + Ap yt-p+B xt + t 变量y1t, y2t,ykt的一阶单整过程I(1)经过差分后变为零阶单整过程I(0),四、Johansen协整检验 1、Johansen协整理论,设变量y1t, y2t,ykt均是非平稳的一阶单整序列,即ytI(1)。xt是d维外生向量,代表趋势项、常数项等, yt=A1 yt-1 +A2 yt-2 + Ap yt-p+B xt + t 变量y1t, y2t,ykt的一阶单整过程I(1)经过差分后变为零阶单整过程I(0),四、Johansen协整检验 1、Johansen协整理论,其中,yt和yt-j(j=1,2,p)都是由I(0)变量构成的向量,如果 yt-1是I(0)的向量,即y1t-1,y2t-1,ykt-1之间具有协整关系,则yt是平稳的。,四、Johansen协整检验 1、Johansen协整理论,根据协整方程中是否包含截距项和趋势项,将其分为五类: 第一类,序列yt没有确定趋势,协整方程没有截距项; 第二类,序列yt没有确定趋势,协整方程有截距项; 第三类,序列yt有确定的线性趋势,协整方程只有截距项; 第四类,序列yt有确定的线性趋势,协整方程有确定的线性趋势; 第五类,序列yt有二次趋势,协整方程只有线性趋势。,四、Johansen协整检验 2、Johansen协整检验,(1)特征根迹(Trace)检验 (2)最大特征值检验,四、Johansen协整检验 2、Johansen协整检验,(1)特征根迹(Trace)检验 原假设为 Hr0:r0,r+1=0 备择假设为 H r1:r+10, r=1,2,k-1 检验统计量为 其中, r是特征根迹统计量。,四、Johansen协整检验 2、Johansen协整检验,(1)特征根迹(Trace)检验 当 0 临界值时,接受H10,至少有一个协整向量; 当 1 临界值时,拒绝H10,至少有两个协整向量; 当 r 临界值时,接受Hr0,只有r个协整向量。,四、Johansen协整检验 2、Johansen协整检验,(2)最大特征值检验 原假设为 Hr0:r+1=0 备择假设为 H r 1:r+10, 检验统计量为 r = - nln(1-r+1) 其中, r是最大特征根统计量。 当 0 临界值时,拒绝H00,至少有一个协整向量; 当 1 临界值时,拒绝H10,至少有两个协整向量; 当 r 临界值时,接受Hr0,只有r个协整向量。,四、 Johansen协整检验 EViews操作,在EViews软件操作中,选择VAR01对象工具栏中的“View”|“Cointegration Test”选项,打开下图所示的协整检验设定对话框。,四、 Johansen协整检验 EViews操作,在“Deterministic trend assumption of test”中确定协整方程的类型 。 在“Exog variables”中输入外生变量xt。如果没有外生变量,此编辑框可为空。 在“Lag intervals”中设定滞后区间,这里的数字要起止点成对输入,如“1 2”。 最右侧的数值为VAR模型滞后阶数p-1,即协整检验的滞后阶数等于VAR模型滞后阶数减去1 。 在“Critical Values”中可设定检验的显著性水平。系统默认下是0.05。用户可以根据实际检验需要设定为0.01或0.10。,五、 向量误差修正(VEC)模型 1、VEC模型理论,根据协整方程可得到如下表达式 这样得到的每一个方程都是误差修正模型, ecmt-1= yt-1是误差修正项,可以反应变量之间的长期均衡关系。,五、 向量误差修正(VEC)模型 1、VEC模型理论,系数向量可以反映变量间的均衡关系偏离长期均衡状态时,将其调整到均衡状态的调整力度。误差修正模型等式右侧的变量差分项的系数反映了各变量的短期波动对被解释变量的短期变化的影响。在回归模型中,统计量不显著的滞后差分项可以直接剔除。,五、 向量误差修正(VEC)模型 2、VEC模型估计,由于VEC模型是含有协整约束变量构建的模型,所以在估计VEC模型前需进行Johansen协整检验,并要确定协整关系的数量。如果变量间没有协整关系,则不能构建VEC模型。,五、 向量误差修正(VEC)模型 2、VEC模型估计,选择主菜单栏中的“Quick”|“Estimate VAR”选项,在VAR模型对话框中选择“Vector Error C
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号