资源预览内容
第1页 / 共26页
第2页 / 共26页
第3页 / 共26页
第4页 / 共26页
第5页 / 共26页
第6页 / 共26页
第7页 / 共26页
第8页 / 共26页
第9页 / 共26页
第10页 / 共26页
亲,该文档总共26页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
八年级上册知识点总结第十一章 全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。理解:全等三角形形状与大小完全相等,与位置无关;一个三角形经过平移、翻折、旋转可以得到它的全等形;三角形全等不因位置发生变化而改变。2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。理解:长边对长边,短边对短边;最大角对最大角,最小角对最小角;对应角的对边为对应边,对应边对的角为对应角。(2)全等三角形的周长相等、面积相等。(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:二、角的平分线:从一个角的顶点得出一条射线把这个角分成两个相等的角,称这条射线为这个角的平分线。1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3) “有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”(5)截长补短法证三角形全等。第十二章 轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系 4.轴对称与轴对称图形的性质 关于某直线对称的两个图形是全等形。 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。二、线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等 3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结: 1.在平面直角坐标系中关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点横坐标互为相反数,纵坐标相等;关于原点对称的点横坐标和纵坐标互为相反数;与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;关于与直线X=C或Y=C对称的坐标点(x, y)关于x轴对称的点的坐标为_ (x, -y)_.点(x, y)关于y轴对称的点的坐标为_(-x, y)_.2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回顾1.等腰三角形的性质.等腰三角形的两个底角相等。(等边对等角).等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)理解:已知等腰三角形的一线就可以推知另两线。2、等腰三角形的判定: 如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)五、(等边三角形)知识点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600 。2、等边三角形的判定: 三个角都相等的三角形是等边三角形。 有一个角是600的等腰三角形是等边三角形。3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。第十三章 实数知识要点归纳一、 实数的分类:正整数整数 零有理数 负整数 有限小数或无限循环小数 分数 正分数负分数 小数 1.实数 正无理数无理数 无限不循环小数 负无理数2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可), 实数与数轴上的点是一一对应的。 数轴上任一点对应的数总大于这个点左边的点对应的数。3、相反数与倒数;4、绝对值 5、近似数与有效数字;6、科学记数法7、平方根与算术平方根、立方根;8、非负数的性质:若几个非负数之和为零 ,则这几个数都等于零。二、复习1. 无理数:无限不循环小数第十四章 一次函数一.常量、变量: 在一个变化过程中,数值发生变化的量叫做 变量 ;数值始终不变的量叫做 常量 。二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。(3)用寄次根式表示的函数,自变量的取值范围是全体实数。 用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一 切实数。(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。四、 函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象五、用描点法画函数的图象的一般步骤1、列表(表中给出一些自变量的值及其对应的函数值。)注意:列表时自变量由小到大,相差一样,有时需对称。2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。六、函数有三种表示形式:(1)列表法 (2)图像法 (3)解析式法七、正比例函数与一次函数的概念:一般地,形如y=kx(k为常数,且k0)的函数叫做正比例函数.其中k叫做比例系数。 一般地,形如y=kx+b (k,b为常数,且k0)的函数叫做一次函数. 当b =0 时,y=kx+b 即为 y=kx,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:(1)图象:正比例函数y= kx (k 是常数,k0) 的图象是经过原点的一条直线,我们称它为直线y= kx 。 (2)性质:当k0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0,b0图像经过一、二、三象限;(2)k0,b0图像经过一、三、四象限;(3)k0,b0 图像经过一、三象限;(4)k0,b0图像经过一、二、四象限;(5)k0,b0图像经过二、三、四象限;(6)k0,b0图像经过二、四象限。一次函数表达式的确定求一次函数y=kx+b(k、b是常数,k0)时,需要由两个点来确定;求正比例函数y=kx(k0)时,只需一个点即可. 5.一次函数与二元一次方程组:解方程组从“数”的角度看,自变量(x)为何值时两个函数的值相等并求出这个函数值 解方程组 从“形”的角度看,确定两直线交点的坐标.第十五章 整式乘除与因式分解一回顾知识点 1、主要知识回顾:幂的运算性质:amanamn (m、n为正整数)同底数幂相乘,底数不变,指数相加 amn (m、n为正整数)幂的乘方,底数不变,指数相乘 (n为正整数)积的乘方等于各因式乘方的积 amn (a0,m、n都是正整数,且mn)同底数幂相除,底数不变,指数相减零指数幂的概念:a01 (a0)任何一个不等于零的数的零指数幂都等于l负指数幂的概念:ap (a0,p是正整数)任何一个不等于零的数的p(p是正整数)指数幂,等于这个数的p指数幂的倒数也可表示为:(m0,n0,p为正整数)单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加2
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号