资源预览内容
第1页 / 共16页
第2页 / 共16页
第3页 / 共16页
第4页 / 共16页
第5页 / 共16页
第6页 / 共16页
第7页 / 共16页
第8页 / 共16页
第9页 / 共16页
第10页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
. . :刚 学号:15平面应力应变分析有限元法Abstruct:本文通过对平面应力/应变问题的简要理论阐述,使读者对要分析的问题有大致的印象,然后结合两个实例,通过MATLAB软件的计算,将有限元分析平面应力/应变问题的过程形象的展示给读者,让人一目了然,快速了解有限元解决这类问题的方法和步骤!一. 基本理论有限元法的基本思路和基本原则以结构力学中的位移法为基础,把复杂的结构或连续体看成有限个单元的组合,各单元彼此在节点出连接而组成整体。把连续体分成有限个单元和节点,称为离散化。先对单元进行特性分析,然后根据节点处的平衡和协调条件建立方程,综合后做整体分析。这样一分一合,先离散再综合的过程,就是把复杂结构或连续体的计算问题转化简单单元分析与综合问题。因此,一般的有限揭发包括三个主要步骤:离散化 单元分析 整体分析。二. 用到的函数 1. LinearTriangleElementStiffness(E,NU,t,xi,yi,xj,yj,xm,ym,p) 2.LinearBarAssemble(K k I f) 3.LinearBarElementForces(k u)4.LinearBarElementStresses(k u A)5.LinearTriangleElementArea(E NU t) 三.实例 例1.考虑如图所示的受均布载荷作用的薄平板结构。将平板离散化成两个线性三角元,假定E=200GPa,v=0.3,t=0.025m,w=3000kN/m. 1.离散化2.写出单元刚度矩阵通过matlab的LinearTriangleElementStiffness函数,得到两个单元刚度矩阵和,每个矩阵都是66的。 E=210e6E = 210000000 k1=LinearTriangleElementStiffness(E,NU,t,0,0,0.5,0.25,0,0.25,1)k1 = 1.0e+006 * Columns 1 through 5 2.0192 0 0 -1.0096 -2.0192 0 5.7692 -0.8654 0 0.8654 0 -0.8654 1.4423 0 -1.4423 -1.0096 0 0 0.5048 1.0096 -2.0192 0.8654 -1.4423 1.0096 3.4615 1.0096 -5.7692 0.8654 -0.5048 -1.8750 Column 6 1.0096 -5.7692 0.8654 -0.5048 -1.8750 6.2740 NU=0.3NU = 0.3000 t=0.025t = 0.0250 k2=LinearTriangleElementStiffness(E,NU,t,0,0,0.5,0,0.5,0.25,1)k2 = 1.0e+006 * Columns 1 through 5 1.4423 0 -1.4423 0.8654 0 0 0.5048 1.0096 -0.5048 -1.0096 -1.4423 1.0096 3.4615 -1.8750 -2.0192 0.8654 -0.5048 -1.8750 6.2740 1.0096 0 -1.0096 -2.0192 1.0096 2.0192 -0.8654 0 0.8654 -5.7692 0 Column 6 -0.8654 0 0.8654 -5.7692 0 5.76923.集成整体刚度矩阵 8*8零矩阵K = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 K=LinearTriangleAssemble(K,k1,1,3,4)K = 1.0e+006 * Columns 1 through 5 2.0192 0 0 0 0 0 5.7692 0 0 -0.8654 0 0 0 0 0 0 0 0 0 0 0 -0.8654 0 0 1.4423 -1.0096 0 0 0 0 -2.0192 0.8654 0 0 -1.4423 1.0096 -5.7692 0 0 0.8654 Columns 6 through 8 -1.0096 -2.0192 1.0096 0 0.8654 -5.7692 0 0 0 0 0 0 0 -1.4423 0.8654 0.5048 1.0096 -0.5048 1.0096 3.4615 -1.8750 -0.5048 -1.8750 6.2740 K=LinearTriangleAssemble(K,k1,1,2,3)K = 1.0e+007 * 0.4038 0 0 -0.1010 -0.2019 0 -0.2019 0.1010 0 1.1538 -0.0865 0 0 -0.5769 0.0865 -0.5769 0 -0.0865 0.1442 0 -0.1442 0.0865 0 0 -0.1010 0 0 0.0505 0.1010 -0.0505 0 0 -0.2019 0 -0.1442 0.1010 0.4904 -0.1875 -0.1442 0.0865 0 -0.5769 0.0865 -0.0505 -0.1875 0.6779 0.1010 -0.0505 -0.2019 0.0865 0 0 -0.1442 0.1010 0.3462 -0.1875 0.1010 -0.5769 0 0 0.0865 -0.0505 -0.1875 0.62744.引入边界条件.用上一步得到的整体刚度矩阵,可以得到该结构的方程组如下形式 本题的边界条件:将边界条件带入,得到: 5.解方程分解上述方程组,提取总体刚度矩阵K的第3-6行的第3-6列作为子矩阵 Matlab命令 k=K(3:6,3:6)k = 1.0e+006 * 3.4615 -1.8750 -2.0192 0.8654 -1.8750 6.2740 1.0096 -5.7692 -2.0192 1.0096 3.4615 0 0.8654 -5.7692 0 6.2740 f=9.375;0;9.375;0f = 9.3750 0 9.3750 0 u=kfu = 1.0e-005 * 0.7111 0.1115 0.6531 0.0045现在可以清楚的看出,节点2的水平位移和垂直位移分别是0.7111m和0.1115m。节点3的水平位移和垂直位移分别是0.6531m和0.0045m。6.后处理用matlab命令求出节点1和节点4的支反力以及每个单元的应力。首先建立总体节点位移矢量U,U=0;0;u;0;0U = 1.0e-005 * 0 0 0.7111 0.1115 0.6531 0.0045 0 0 F=K*UF = -9.3750 -5.6295 9.3750 0.0000 9.3750 0.0000 -9.3750 5.6295由以上知,节点1的水平反力和垂直反力分别是9.375kn(指向左边)和5.6295kn(作用力方向向下),节点4的水平反力和垂直反力分别是9.375kn(指向左边)和5.6295kn(作用力方向向下).满足力平衡条件。接着,建立单元节点位移矢量,然后调用matlab命令LinearTriangleElementStresses计算单元应力sigma1和sigma2
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号