资源预览内容
第1页 / 共15页
第2页 / 共15页
第3页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2015年高考理科数学试卷全国1卷1设复数z满足=,则|z|=( )(A)1 (B) (C) (D)22 =( )(A) (B) (C) (D)3设命题:,则为( )(A) (B)(C) (D)4投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )(A)0.648 (B)0.432 (C)0.36 (D)0.3125已知M()是双曲线C:上的一点,是C上的两个焦点,若,则的取值范围是( )(A)(-,) (B)(-,)(C)(,) (D)(,)6九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )(A)14斛 (B)22斛 (C)36斛 (D)66斛7设为所在平面内一点,则( )(A) (B)(C) (D)8函数=的部分图像如图所示,则的单调递减区间为( )(A) (B)(C) (D)9执行右面的程序框图,如果输入的t=0.01,则输出的n=( )(A)5 (B)6 (C)7 (D)810的展开式中,的系数为( )(A)10 (B)20 (C)30 (D)6011圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20,则r=( )(A)1 (B)2 (C)4 (D)812设函数=,其中a1,若存在唯一的整数,使得0,则的取值范围是( )(A)-,1) (B)-,) (C),) (D),1)13若函数f(x)=为偶函数,则a= 14一个圆经过椭圆的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为.15若满足约束条件,则的最大值为.16在平面四边形ABCD中,A=B=C=75,BC=2,则AB的取值范围是.17(本小题满分12分)为数列的前项和.已知0,=.()求的通项公式;()设 ,求数列的前项和.18如图,四边形ABCD为菱形,ABC=120,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE=2DF,AEEC.()证明:平面AEC平面AFC;()求直线AE与直线CF所成角的余弦值.19某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量(=1,2,8)数据作了初步处理,得到下面的散点图及一些统计量的值.46.656.36.8289.81.61469108.8表中 ,=()根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)()根据()的判断结果及表中数据,建立y关于x的回归方程;()已知这种产品的年利率z与x、y的关系为z=0.2y-x.根据()的结果回答下列问题:()年宣传费x=49时,年销售量及年利润的预报值是多少?()年宣传费x为何值时,年利率的预报值最大?附:对于一组数据,,,其回归线的斜率和截距的最小二乘估计分别为:20(本小题满分12分)在直角坐标系中,曲线C:y=与直线(0)交与M,N两点,()当k=0时,分别求C在点M和N处的切线方程;()y轴上是否存在点P,使得当k变动时,总有OPM=OPN?说明理由.21(本小题满分12分)已知函数f(x)=.()当a为何值时,x轴为曲线 的切线;()用 表示m,n中的最小值,设函数 ,讨论h(x)零点的个数.22(本题满分10分)选修4-1:几何证明选讲如图,AB是的直径,AC是的切线,BC交于E. ()若D为AC的中点,证明:DE是的切线;()若,求ACB的大小. 23(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,直线:=2,圆:,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.()求,的极坐标方程;()若直线的极坐标方程为,设与的交点为, ,求的面积. 24(本小题满分10分)选修45:不等式选讲 已知函数=|x+1|-2|x-a|,a0.()当a=1时,求不等式f(x)1的解集;()若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围.【答案解析】1.【答案】A【解析】由得,=,故|z|=1,故选A.考点:本题主要考查复数的运算和复数的模等.2.【答案】D【解析】原式= =,故选D.考点:本题主要考查诱导公式与两角和与差的正余弦公式.3.【答案】C【解析】:,故选C.考点:本题主要考查特称命题的否定4.【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为=0.648,故选A.考点:本题主要考查独立重复试验的概率公式与互斥事件和概率公式5.【答案】A【解析】由题知,所以= =,解得,故选A.考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.6.【答案】B【解析】设圆锥底面半径为r,则=,所以米堆的体积为=,故堆放的米约为1.6222,故选B.考点:圆锥的性质与圆锥的体积公式7.【答案】A【解析】由题知=,故选A.考点:平面向量的线性运算8.【答案】D【解析】由五点作图知,解得,所以,令,解得,故单调减区间为(,),故选D.考点:三角函数图像与性质9.【答案】C【解析】执行第1次,t=0.01,S=1,n=0,m=0.5,S=S-m=0.5,=0.25,n=1,S=0.5t=0.01,是,循环,执行第2次,S=S-m=0.25,=0.125,n=2,S=0.25t=0.01,是,循环,执行第3次,S=S-m=0.125,=0.0625,n=3,S=0.125t=0.01,是,循环,执行第4次,S=S-m=0.0625,=0.03125,n=4,S=0.0625t=0.01,是,循环,执行第5次,S=S-m=0.03125,=0.015625,n=5,S=0.03125t=0.01,是,循环,执行第6次,S=S-m=0.015625,=0.0078125,n=6,S=0.015625t=0.01,是,循环,执行第7次,S=S-m=0.0078125,=0.00390625,n=7,S=0.0078125t=0.01,否,输出n=7,故选C.考点:本题注意考查程序框图10.【答案】C【解析】在的5个因式中,2个取因式中剩余的3个因式中1个取,其余因式取y,故的系数为=30,故选 C.考点:本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解.11.【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r,圆柱的高为2r,其表面积为=16 + 20,解得r=2,故选B.考点:简单几何体的三视图;球的表面积公式、圆柱的测面积公式12.【答案】D【解析】设=,由题知存在唯一的整数,使得在直线的下方.因为,所以当时,0,当时,0,所以当时,=,当时,=-1,直线恒过(1,0)斜率且,故,且,解得1,故选D.考点:本题主要通过利用导数研究函数的图像与性质解决不等式成立问题13.【答案】1【解析】由题知是奇函数,所以 =,解得=1.考点:函数的奇偶性14.【答案】【解析】设圆心为(,0),则半径为,则,解得,故圆的方程为.考点:椭圆的几何性质;圆的标准方程15.【答案】3【解析】作出可行域如图中阴影部分所示,由斜率的意义知,是可行域内一点与原点连线的斜率,由图可知,点A(1,3)与原点连线的斜率最大,故的最大值为3.考点:线性规划解法16.【答案】(,)【解析】如图所示,延长BA,CD交于E,平移AD,当A与D重合与E点时,AB最长,在BCE中,B=C=75,E=30,BC=2,由正弦定理可得,即,解得=,平移AD ,当D与C重合时,AB最短,此时与AB交于F,在BCF中,B=BFC=75,FCB=30,由正弦定理知,即,解得BF=,所以AB的取值范围为(,).考点:正余弦定理;数形结合思想17.【答案】()()【解析】试题分析:()先用数列第项与前项和的关系求出数列的递推公式,可以判断数列是等差数列,利用等差数列的通项公式即可写出数列的通项公式;()根据()数列的通项公式,再用拆项消去法求其前项和.试题解析:()当时,因为,所以=3,当时,=,即,因为,所以=2,所以数列是首项为3,公差为2的等差数列,所以=;()由()知,=,所以数列前n项和为= =.考点:数列前n项和与第n项的关系;等差数列定义与通项公式;拆项消去法18.【答案】()见解析()【解析】试题分析:()连接BD,设BDAC=G,连接EG,FG,EF,在菱形ABCD中,不妨设GB=1易证EGAC,通过计算可证EGFG,根据线面垂直判定定理可知EG平面AFC,由面面垂直判定定理知平面AFC平面AEC;()以G为坐标原点,分别以的方向为轴,y轴正方向,为单位长度,建立空间直角坐标系G-xyz,利用向量法可求出异面直线AE与CF所成角的余弦值.试题解析:()连接BD,设BDAC=G,连接EG,FG,EF,在菱形ABCD中,不妨设GB=1,由ABC=120,可得AG=GC=.由BE平面ABCD,AB=BC可知,AE=EC,又AEEC,EG=,EGAC,在RtEBG中,可得BE=,故DF=.在RtFDG中,可得FG=.在直角梯形BDFE中,由BD=2,BE=,DF=可得EF=,EGFG,ACFG=G,EG平面AFC,EG面AEC,平面AFC平面AEC. ()如图,以G为坐标原点,分别以的方向为轴,y轴正方向,为单位长度,建立空间直角坐标系G-xyz,由()可得A(0,0),E(1,0, ),F(1,0,),C(0,0),=(1,),=(-1,-,).10分故.所以直线AE与CF所成的角
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号