资源预览内容
第1页 / 共9页
第2页 / 共9页
第3页 / 共9页
第4页 / 共9页
第5页 / 共9页
第6页 / 共9页
第7页 / 共9页
第8页 / 共9页
第9页 / 共9页
亲,该文档总共9页全部预览完了,如果喜欢就下载吧!
资源描述
复合型裂纹断裂准则研究摘要 实际结构中由于荷载分布不对称,脆性材料的裂 纹方位不对称以及材料各向异性等因素使得裂纹不是单一的受力状态。脆性材料中的裂 纹多处于复合型受力状态,因此,确定脆性材料中的复合型裂纹起裂角和临界荷载有着重要的理论意义和实用价值。以因而复合型裂纹断裂准则的研究有重要的理论意义和广泛的实用价值。复合型裂 纹扩展与 经典的 Griffith I 型裂纹扩展的要区别在于裂纹不是沿原来的裂纹面扩展,而是沿新的分枝扩展。本文 以复合型裂 纹为对象,将几种裂纹断裂准则进行整理和小结。关键词 复合型裂纹;脆性断裂;起裂角;断裂准则1. 引言实际结构中由于荷载、结构、裂缝方位及材料各向异性等因素往往使裂缝不是单一的受力类型,因此复合型裂纹的分析有着重要的工程意义。许多学者、研究工作人员从不同的角度对宏观断裂机理进行了解释,建立了相应的复合型断裂准则。复合型裂纹的断裂准则基本上都是围绕以下两个问题展开的。1.裂纹沿什么方向扩展;2.裂纹在什么条件下扩展。即确定裂纹初始扩展的方位角 ,和裂纹扩展的临界荷载。从宏观连续介质力学的观O点研究复合型裂纹扩展断裂的问题,可以有多种方法。其中比较常用的是两种方法:一是应力参数型,如最大周向应力准则。二是能量型,如应变能密度因子准则,能量释放率准则。近年来,又有学者对复合弹塑性裂缝提出了 积分断裂准则。 积分断裂准则在预测JJ起裂荷载时与试验符合得较好,而在起裂角的预测上则有些偏差。另外,还有学者将偏斜应力张量的第二不变量 作为判定依据,提出了最小 准则。金属材料中的裂纹扩展的真2J2J实动力来源于形状改变比能,为此,建立了形状改变比能密度因子准则和复合型裂纹扩展的形状改变比能准则,简称最小 准则和 。这些准则在复合型断裂的理论研究和实际dSdU工程应用上都有重要的意义。2. 各种复合型裂纹断裂准则简介2.1 最大周向应力理论国外学者 Erdogan 和 Sih G C 首先提出了最大周向应力理论(又称为最大拉应力理论) 。文中假定:(1)裂纹沿最大周向应力 的方向开裂。max(2)裂纹扩展是由于最大周向应力达到了某一临界值而产生。对于 III 复合型裂纹问题,裂纹尖端附近的极坐标应力分量表达式为: (2.1)213cos3cos1in22in1cosi3cos12rI IIIr IIKK 上述裂纹尖端的极坐标应力分量公式,在极半径 r 远远小于裂纹半长度 a 时适用。根据最大拉应力理论的假定,(1) 裂纹扩展方向由下式确定:(2.2)20;rconst(2.3)i(31)IIK式(2.3)可以确定开裂角 方向。O(2)根据假定(3-2),可以建立起相应的断裂判据:(2.4)maxc式中 为最大周向应力的临界值,可以由 I 型裂纹的断裂韧度 来确定。由于 I 型裂c ICK纹总是沿着原裂纹面的方向扩展,因此,开裂角 。将 代入(2-1)0O,0,IoIIC式的第二式,得:(2.5)2ICcKr将(2-1)式的第二式和(2-5) 式代入 (2-4)式得, (2.6)23coscssinOOIIOICK这就是最大周向应力理论建立起来的 III 复合型裂纹的断裂判据。2.1.2 应变能密度因子理论最大拉应力理论是以裂纹顶端为中心的同心圆上(r =常数)的最大周向应力作为衡量材料是否断裂的依据。然而材料的断裂不可能只由六个独立应力分量中的一个完全决定,而是应力分量共同作用的结果。Sih 提出了应变能密度因子理论,简称 理论。该理论minS认为复合型裂纹扩展的临界条件取决于裂纹尖端区域的能量状态和材料的力学性能。该理论在预测裂纹扩展时基于以下两个基本假设:裂纹的初始扩展是沿着应变能密度最小的方向。裂纹的扩展是应变能密度因子达到材料相应的临界值时发生的。对于线弹性体,应变能密度为,(2.7)22 221 1xyzxyzyxzxyzxWEE 将 I、II、III 型裂纹尖端附近区域的应力场叠加,得 I-II-III 复合型裂纹尖端的应力场,其应力分量为,(2.8)133cos1inssin2cos222iicosin2133iscos1ins22xI IyI IzIIxyI IKKrrKK cos2inIzyIzxr 将(2-8)式代入 (2-9)式得用应力强度因子 表达的应变能密度:,IIK(2.9)222113IIIIWaKar式中系数分别为:(2.10)12334cos6in1241coscs3o16aa 由以上两式可以看出,裂纹尖端附近区域的应变能密度不仅依赖于材料的弹性常数,而且还是极角 的函数。若令:(2.11)222113IIIISaKaK则(2-13) 式可以写成: (2.12)SWr其中 S 成为应变能密度因子,它表示裂纹尖端附近区域应变能密度场的幅度或强度,是具有方向性的量,r 裂纹前缘极坐标半径。根据应变能密度因子理论在预测裂纹扩展时的两个基本假设有:(1) 裂纹将沿着 S 最小值的方向开始扩展,(2.13)200,=S, 且 当 时(2) 裂纹的扩展是由于最小 S 达到材料相应的临界值 时发生的,即:cS(2.14)minc公式(2-13)、(2-14) 为应变能密度因子理论的基本方程。裂纹的初始扩展角由(2-13)式确定,求得开裂角后,代入(2-14)式得裂纹扩展判据或临界荷载。至于临界值 ,可以从 I 型裂纹的断裂韧度值 确定,对于纯 I 型裂纹问题,由于cS ICK,由(2-10)和(2-11)式可得:0IIK(2.15)2 2134cos16I ISaKv鉴于 I 型裂纹总是沿着原来的裂纹面方向扩展,故在上式中令 , ,就得0IICK到材料相应的临界值 : (2.16)cS24ICvK对于纯 II 型裂纹: ,(3-19)式中仅含 的一项不等于零,即:0,IIK2I(2.17)214cos1cos316I iISavK 将上式对 求导,令 ,得: ,使 。即纯 II 型裂纹的开0S2,v20S裂方向并不是沿着原来的裂纹方向,而是与原来方向成一角,此方向依赖于材料性质,与柏松比 v 有关。对于 I-II 复合型裂纹受单轴拉伸的情况,如图所示。此时 I,II 型应力强度因子 分,IK别为: 。将代入,应变能密度因子为:2sin,sincoIIKK(2.18)2112 (,)IIISaaF预测了裂纹扩展角后,再来预测临界荷载。由 的条件,可以得到无量纲的临mincS界荷载 与裂纹角 之间的关系为, (2.19)/ICK124,ICKv2.1.3 复合型裂纹扩展的应变能准则材料的断裂可分为脆性断裂和韧性断裂两种型式,但实际上许多脆性材料断裂前在裂纹尖端已存在着塑性区,这种塑性区的存在可以阻止脆性断裂的裂纹扩展。该准则对裂纹扩展作如下假定:(1) 裂纹初始扩展方向是沿裂纹尖端至弹塑性边界最小距离的方向。(2) 当弹塑性边界内的总应变能达到 I 型断裂时应变能的临界值时,裂纹开始失稳扩展。将 I-II-III 复合型裂纹尖端应力分量代入应变能密度方程得:(2.20)222113226IIIIdIIIIWaKaKurcc裂纹尖端附近的弹塑性边界线可由 Von-Mises 屈服条件确定,因此, ,代入相应方程得下式:2,/6dosu(2.21)22112338IIIIrcKcK即式为裂纹前缘弹塑性边界线方程。根据前述裂纹扩展的假设(1),开裂角将由下式确定, (2.22)20,dr由(2-28) 、(2-29)两式可得开裂角方程:(2.23)2 2sini2cosssin3i20I I IKKKI-II-III 复合裂纹断裂包络面方程:(2.24)4222441113323II IIIIICbbbK其中:(2.25)12 133 2849/82, ,714741/5609, ,/ /371241vvvbbv(2-23)式和 (2-25)式为复合型裂纹扩展的应变能准则的基本方程2.1.4 最小 准则2J该准则认为裂纹在起裂和扩展过程的能量转化过程中起主要作用的是形状改变比能。并将偏应力张量的第二不变量 作为判定依据,预测了裂纹启裂的角度和开裂荷载并且与2J实验数据符合得较好。偏斜应力张量的第二不变量 在平面问题中可用应力分量来表示:2(2.26)2221(,) 626IijxyxzyzxyJKS 将在 I-II 复合型裂纹问题中,裂纹尖端附近的弹性应力场的方程和式代入,可得的表达式,可以分成两个部分:体现裂纹尖端奇异性的项 和非奇异性的项 :2J 21J2J(2.27)2212221*2 *312(,)(,)(,)66(,)coscos4I I II xyxzyzxyI xKJKJJTT 可以看出函数不仅反映了裂纹尖端区域应力的大小,而且体现了方向性。最小 准则2J是基于以下两个基本假定:(1).裂纹将沿 最小值的方向开始扩展,即2J(2.28) 200,=dJ且 , 当(2).裂纹开始扩展的判据是 达到其临界值 ,即22cJ(2.29)0=,cJ对公式(2-28) 和公式 (2-29)构成了最小 准则的基本方程。2J最小 准则以偏斜应力张量的第二不变量 作为 I-II 复合型裂纹断裂的判定依据。在2J 2裂纹扩展引起的应变能转化过成中,等效于形状该变比能的 起作用。根据最小 准则成2J2J功地预测了裂纹起裂的角度和开裂荷载并且与实验数据符合得较好。2.1.5 形状改变比能密度因子断裂准则直接建立了形状改变比能密度因子理论,简称 准则,其结果与提供的理论计算结dminS果和实验数据取得了较好的一致。该理论具有物理概念明确,公式推导简便,工程应用方便等优点。裂纹尖端附近区域的形状改变比能密度不仅依赖于材料的弹性常数,而且还是极角 的函数。若令:(2.30)222113IIIISCKCK则式可以写成: (2.31)dSWr根据本文提出的形状改变比能密度因子理论(简称 准则) 的两个基本假设有:dminS(1) 裂纹将沿着 最小值的方向开始扩展,即dS(2.32)200,=dS, 且 当 时(2) 裂纹的扩展是由于最小 S 达到材料相应的临界值 即:dcS(2.33)mindc公式(2-32)和(2-43)为最小 准则的基本方程。dinS2.1.6 复合型裂纹扩展的形状改变比能准则以裂纹尖端附近塑性屈服区内的总形状改变比能为依据。建立了复合型裂纹扩展的形状改变比能准则。该准则考察的是裂纹尖端塑性区域内总形状改变比能的变化对裂纹扩展的作用,这样比用裂纹尖端附近某一点处的一个力学参量的变化来描述裂纹扩展更符合实际情况。建立的复合型裂纹扩展的形状改变比能准则(以下简称 为准则)成功地预测了dU复合型裂纹
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号