资源预览内容
第1页 / 共12页
第2页 / 共12页
第3页 / 共12页
第4页 / 共12页
第5页 / 共12页
第6页 / 共12页
第7页 / 共12页
第8页 / 共12页
第9页 / 共12页
第10页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
高考必备物理曲线运动技巧全解及练习题( 含答案 ) 含解析一、高中物理精讲专题测试曲线运动1 如图所示,倾角为45的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b,整个轨道处在竖直平面内 . 一质量为速下滑进入圆环轨道,接着小滑块从最高点m的小滑块从导轨上离地面高为H=3ra 水平飞出,恰好击中导轨上与圆心的d 处无初O 等高的c 点 . 已知圆环最低点为e 点,重力加速度为g,不计空气阻力. 求:( 1)小滑块在 a 点飞出的动能;()小滑块在 e 点对圆环轨道压力的大小;( 3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】( 1)142mgr ;() ;( )Ek2=6mg2F314【解析】【分析】【详解】( 1)小滑块从 a 点飞出后做平拋运动:水平方向: 2r vat竖直方向: r1gt 22解得: vagr小滑块在 a 点飞出的动能 Ek1mva21mgr22(2)设小滑块在e 点时速度为 vm ,由机械能守恒定律得:1 mvm21 mva2mg 2r22在最低点由牛顿第二定律:Fmgmvm2r由牛顿第三定律得:F=F解得: F =6mg(3) bd 之间长度为L,由几何关系得:L221 r从 d 到最低点 e 过程中,由动能定理 mgHmg cos L1mvm22解得42142 如图所示,竖直圆形轨道固定在木板 B 上,木板小球 A 静止在木板 B 上圆形轨道的左侧一质量为B 固定在水平地面上,一个质量为m 的子弹以速度v0 水平射入小球并停3m留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动圆形轨道半径为 R,木板B 和圆形轨道总质量为12m,重力加速度为g,不计小球与圆形轨道和木板间的摩擦阻力求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围32mv02(3) v04 2gR 或 45gR v0 8 2gR【答案】 (1)mv0(2) 16mg4R8【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题(1)子弹射入小球的过程,由动量守恒定律得:mv0 (m3m)v1由能量守恒定律得:Q1 mv0214mv1222代入数值解得: Q3 mv028(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式(m3m)v12得 F1(m3m) gR以木板为对象受力分析得F212mgF1根据牛顿第三定律得木板对水平的压力大小为F2木板对水平面的压力的大小F216mgmv024R(3)小球不脱离圆形轨有两种可能性: 若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:1m 3m v12m 3m gR2解得: v042gR 若小球能通过圆形轨道的最高点小球能通过最高点有:(m 3m)v(m 3m) gR22由机械能守恒定律得:1 (m 3m)v122(m 3m)gR1 ( m 3m)v2222代入数值解得:v04 5gR要使木板不会在竖直方向上跳起,木板对球的压力:F312mg(m3m)v在最高点有:F3(m3m)gR23由机械能守恒定律得:1(m 3m)v122(m 3m)gR1( m 3m)v3222解得: v082gR综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是v04 2gR 或 4 5gRv08 2gR3 如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。【答案】【解析】【分析】根据牛顿第二定律求出支持力为零时,小球的线速度的大小,从而确定小球有无离开圆锥体的斜面,若离开锥面,根据竖直方向上合力为零,水平方向合力提供向心力求出线对小球的拉力大小。【详解】若小球刚好离开圆锥面,则小球所受重力与细线拉力的合力提供向心力,有:此时小球做圆周运动的半径为:解得小球运动的角速度大小为:代入数据得:若小球运动的角速度为:小球对圆锥体有压力,设此时细线的拉力大小为F,小球受圆锥面的支持力为,则水平方向上有:竖直方向上有:联立方程求得:【点睛】解决本题的关键知道小球圆周运动向心力的来源,结合牛顿第二定律进行求解,根据牛顿第二定律求出临界速度是解决本题的关键。4 光滑水平面AB 与一光滑半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R,一个质量为 m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的9 倍,之后向上运动经C 点再落回到水平面,重力加速度为g.求:(1)弹簧弹力对物块做的功;(2)物块离开 C 点后,再落回到水平面上时距B 点的距离;(3)再次左推物块压紧弹簧,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为多少?【答案】 (1)(2) 4R( 3)或【解析】【详解】(1)由动能定理得W在 B 点由牛顿第二定律得:9mg mg m解得 W 4mgR(2)设物块经C 点落回到水平面上时距B 点的距离为S,用时为t ,由平抛规律知S=vct2R= gt2从 B 到 C 由动能定理得联立知, S= 4 R( 3)假设弹簧弹性势能为 ,要使物块在半圆轨道上运动时不脱离轨道,则物块可能在圆轨道的上升高度不超过半圆轨道的中点,则由机械能守恒定律知mgR若物块刚好通过C 点,则物块从B 到 C 由动能定理得物块在 C 点时 mg m则联立知: mgR.综上所述,要使物块在半圆轨道上运动时不脱离轨道,则弹簧弹性势能的取值范围为mgR 或 mgR.5 如图所示,将一小球从倾角 =60斜面顶端,以初速度 v0 水平抛出,小球落在斜面上的某点 P,过 P 点放置一垂直于斜面的直杆 (P 点和直杆均未画出 )。已知重力加速度大小为g,斜面、直杆处在小球运动的同一竖直平面内,求:(1)斜面顶端与P 点间的距离;(2)若将小球以另一初速度v 从斜面顶端水平抛出,小球正好垂直打在直杆上,求v 的大小。【答案】( 1);( 2);【解析】本题考查平抛与斜面相结合的问题,涉及位移和速度的分解。(1)小球从抛出到P 点,做平抛运动,设抛出点到P 点的距离为L小球在水平方向上做匀速直线运动,有:在竖直方向上做自由落体运动,有:联立以上各式,代入数据解得:(2)设小球垂直打在直杆上时竖直方向的分速度为vy,有:在水平方向上,有:在竖直方向上,有:,由几何关系,可得:联系以上各式,得:另解:小球沿斜面方向的分运动为匀加速直线运动,初速度为:,加速度为小球垂直打在直杆上,速度为,有:在斜面方向上,由匀变速运动规律得:联立以上各式,得:点睛:物体平抛运动可分解成水平方向的匀速直线运动和竖直方向的自由落体;也可分解为沿斜面方向的匀变速直线运动和垂直斜面的匀变速直线运动。6 水平面上有一竖直放置长H 1.3m两点, PQ 间距离为d0.3m,一质量为的杆 PO,一长 L 0.9m 的轻细绳两端系在杆上m 1.0kg 的小环套在绳上。杆静止时,小环靠在P、 Q杆上,细绳方向竖直;当杆绕竖直轴以角速度旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。重力加速度g10m s2,忽略一切摩擦。求:( 1)杆静止时细绳受到的拉力大小T;( 2)细绳断裂时杆旋转的角速度大小;(3)小环着地
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号