资源预览内容
第1页 / 共5页
第2页 / 共5页
第3页 / 共5页
第4页 / 共5页
第5页 / 共5页
亲,该文档总共5页全部预览完了,如果喜欢就下载吧!
资源描述
全国2010年7月高等教育自学考试线性代数(经管类)试题 课程代码:04184试卷说明:在本卷中,AT表示矩阵A的转置矩阵(行列对换);A*表示A的伴随矩阵; A-1=(重要)求A-1 和A*时,可用这个公式,A*太复杂了自己看看r(A)表示矩阵A的秩;| A |表示A的行列式;E表示单位矩阵。 ,每一项都乘2一、单项选择题 表示矩阵,矩阵乘矩阵还是矩阵;| |表示行列式,计算后为一个数值,行列式相乘为数值运算在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1.设3阶方阵A=(1,2,3),其中i(i=1,2,3)为A的列向量,若| B |=|(1+22,2,3)|=6,则| A |=( C )A.-12B.-6 i(i=1,2,3)为A的列向量,3行1列C.6D.122.计算行列式=( A )=3*-2*10*3=-180A.-180B.-120C.120D.1803.若A为3阶方阵且| A-1 |=2,则| 2A |=( C )=23| A |=8*1/2=4A.B.2C.4D.84.设1,2,3,4都是3维向量,则必有( B ) n+1个n维向量线性相关A.1,2,3,4线性无关B.1,2,3,4线性相关C.1可由2,3,4线性表示D.1不可由2,3,4线性表示5.若A为6阶方阵,齐次线性方程组Ax=0的基础解系中解向量的个数为2,则r(A)=( C )A.2B.3 n- r(A)=解向量的个数=2,n=6C.4D.56.设A、B为同阶方阵,且r(A)=r(B),则( C ) A与B合同 r(A)=r(B) PTAP=B, P可逆A.A与B相似B.| A |=| B |C.A与B等价D.A与B合同7.设A为3阶方阵,其特征值分别为2,1,0则| A+2E |=( D ),| A |=所有特征值的积=0A.0B.2 A+2E的特征值为2+2,1+2,0+2,即4,3,2,| A+2E |=4*3*2C.3D.248.若A、B相似,则下列说法错误的是( B )A.A与B等价B.A与B合同C.| A |=| B |D.A与B有相同特征值A、B相似A、B特征值相同| A |=| B | r(A)=r(B);若AB,BC,则AC(代表等价)9.若向量=(1,-2,1)与=(2,3,t)正交,则t=( D ) , 即1*2-2*3+1*t=0,t=4A.-2B.0C.2D.410.设3阶实对称矩阵A的特征值分别为2,1,0,则( B ),所有特征值都大于0,正定;A.A正定 B.A半正定 所有特征值都小于0,负定;C.A负定 D.A半负定 所有特征值都大于等于0,半正定;同理半负定;其他情况不定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。11.设A=,B=,则AB=(A的每一行与B的每一列对应相乘相加)= 下标依次为行列,如表示第二行第一列的元素。 A为三行两列的矩阵即32的矩阵,B为23的矩阵,则AB为33的矩阵,对应相乘放在对应位置12.设A为3阶方阵,且| A |=3,则| 3A-1 |= 33| A-1 |=27*=913.三元方程x1+x2+x3=1的通解是_. 扩充为,再看答案14.设=(-1,2,2),则与反方向的单位向量是_跟高中单位向量相同_.15.设A为5阶方阵,且r(A)=3,则线性空间W=x | Ax=0的维数是_.16.设A为3阶方阵,特征值分别为-2,1,则| 5A-1 |=_同12题_.17.若A、B为5阶方阵,且Ax=0只有零解,且r(B)=3,则r(AB)=_.若矩阵A的行列式| A |0,则A可逆,即A A-1=E,E为单位矩阵。Ax=0只有零解| A |0,故A可逆若A可逆,则r(AB)= r(B)=3,同理若C可逆,则r(ABC)= r(B)18.实对称矩阵A=所对应的二次型f (x1, x2, x3)= 实对称矩阵A 对应于各项的系数19.设3元非齐次线性方程组Ax=b有解1=,2=且r(A)=2,则Ax=b的通解是_.20.设=,则A=T的非零特征值是_.三、计算题(本大题共6小题,每小题9分,共54分)21.计算5阶行列式D=22.设矩阵X满足方程 X=求X.23.求非齐次线性方程组的通解.24.求向量组1=(1,2,-1,4),2=(9,100,10,4),3=(-2,-4,2,-8)的秩和一个极大无关组.25.已知A=的一个特征向量=(1,1,-1)T,求a,b及所对应的特征值,并写出对应于这个特征值的全部特征向量.26.设A=,试确定a使r(A)=2.四、证明题(本大题共1小题,6分)27.若1,2,3是Ax=b(b0)的线性无关解,证明2-l,3-l是对应齐次线性方程组Ax=0的线性无关解.
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号