资源预览内容
第1页 / 共15页
第2页 / 共15页
第3页 / 共15页
第4页 / 共15页
第5页 / 共15页
第6页 / 共15页
第7页 / 共15页
第8页 / 共15页
第9页 / 共15页
第10页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2020届江苏省扬州市高邮市高三上学期开学考试数学(文)试题一、填空题1已知集合,则_.【答案】【解析】根据交集定义直接可得结果.【详解】因为集合,所以,由交集的定义得:本题正确结果:【点睛】本题考查集合运算中的交集运算,属于基础题.2已知复数的实部为0,其中为虚数单位,则实数a的值是_.【答案】2.【解析】本题根据复数的乘法运算法则先求得,然后根据复数的概念,令实部为0即得a的值.【详解】,令得.【点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.3函数的定义域为_【答案】2,+)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数有意义,则,解得,即函数的定义域为.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.4已知直线l1:和l2:平行,则实数a的值为_【答案】;【解析】首先利用两直线平行时方程中系数所满足的条件,列出对应的等式和不等式,最后求得结果.【详解】当两直线平行时,有,解得,故答案是.【点睛】该题考查的是有关直线平行时,方程的系数所满足的条件,需要注意的是需要将重合的情况排除,属于简单题目.5设命题;命题,那么是的_条件.(选填“充分不必要”、“充要”、“既不充分也不必要”)【答案】充分不必要【解析】解不等式得到命题中的范围,根据集合的包含关系可得结果.【详解】由得:或,可知是或的真子集是的充分不必要条件本题正确结果:充分不必要【点睛】本题考查充分条件和必要条件的判定,关键是能够明确充分必要条件与集合包含关系之间的关系.6已知的内角所对的边分别为,若,则_.【答案】【解析】直接利用正弦定理求解即可.【详解】,是锐角,由正弦定理可得,故答案为.【点睛】本题主要考查正弦定理解三角形以及特殊角的三角函数,属于基础题. 正弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.7已知函数,若,则实数_.【答案】【解析】分别讨论和两种情况,构造方程求得结果.【详解】当时,解得:当时,解得:(舍)综上所述: 本题正确结果:【点睛】本题考查根据函数值求解参数值的问题,属于基础题.8设曲线的图象在点(1,)处的切线斜率为2,则实数a的值为_【答案】3【解析】首先对函数求导,根据函数图象在某个点处的切线的斜率就是函数在该点处的导数,从而将相应的量代入,求得结果.【详解】函数,可得,所以切线的斜率为,解得,故答案是3.【点睛】该题考查的是有关函数图象在某个点处的切线的斜率问题,涉及到的知识点有导数的几何意义,根据题意,得到参数所满足的等量关系,求得结果,属于简单题目.9若“,使得成立”是假命题,则实数的取值范围是_【答案】【解析】【详解】若“,使得成立”是假命题,即“,使得成立”是假命题,由,当时,函数取最小值,故实数的取值范围为,故答案为.10在平面直角坐标系中,将函数的图像向右平移个单位长度.若平移后得到的图像经过坐标原点,则的值为_.【答案】【解析】函数的图像向右平移 个单位得,因为过坐标原点,所以 点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言. 函数是奇函数;函数是偶函数;函数是奇函数;函数是偶函数.11已知,则的值为_.【答案】【解析】根据角的范围和同角三角函数关系可求得;利用二倍角公式可求得和;将所求角拆为,利用两角和差正弦公式求得结果.【详解】 ,又 ,本题正确结果:【点睛】本题考查三角恒等变换的求值问题,涉及到同角三角函数关系、二倍角的正弦和余弦公式、两角和差正弦公式的应用;关键是能够将所求角拆分为两个已知三角函数值的角的形式,从而利用两角和差公式来进行求解.12如下图,在中, 若,则_【答案】【解析】因为,又因为,所以,也即,所以,又,故,由余弦定理得,则 ,应填答案。点睛:本题综合考查向量的几何运算法则、数量积公式、余弦定理等许多重要基础知识和基本方法,同时也考查了等价转化与化归、函数方程等重要数学思想的综合运用。13在平面直角坐标系中,己知直线与曲线从左至右依次交于三点,若直线上存在点,满足,则实数的取值范围为_.【答案】【解析】根据奇偶性可知关于原点对称,从而可知关于原点对称;根据向量加法运算法则可知,从而根据模长可得点轨迹为圆;根据圆与直线有交点,利用圆心到直线距离小于等于半径可构造不等式求得结果.【详解】 为奇函数,图象关于原点对称又关于原点对称 两点必关于原点对称,则为中点根据向量加法运算法则可知:,又 即点轨迹是以为圆心,为半径的圆:直线与有交点圆心到直线的距离:,解得:本题正确结果:【点睛】本题考查根据直线与圆的位置关系求解参数范围的问题;关键是能够根据直线与曲线的对称性得到两交点关于原点对称,利用对称性和向量运算法则可得到点轨迹方程.14已知函数若关于的方程恰有三个不同的实数解,则满足条件的所有实数的取值集合为_【答案】【解析】根据分段函数解析式作出函数的图像如图,是过定点的动直线,关于的方程恰有三个不同的实数解,就是直线与曲线有三个交点,所以当直线过点或或与在上的图像相切时有三个交点,当直线过时,当直线过时,当直线与在上相切时,可得,当直线与在上相切时,可得,故填:点睛:本题涉及分段函数,二次函数,指数函数,以及函数零点,方程,图像等概念和知识,综合性较强,属于难题一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高二、解答题15己知,为钝角,且,.(1)求的值:(2)求的值.【答案】(1)-2;(2)【解析】(1)根据为钝角可知,利用二倍角公式可构造方程求出,根据同角三角函数关系可求得结果;(2)根据同角三角函数关系和为钝角可求得,利用两角和差余弦公式可求得结果.【详解】(1),解得: (2), 【点睛】本题考查同角三角函数关系、两角和差余弦公式的应用;易错点是忽略角所处的范围,造成求解同角三角函数值时出现符号错误.16已知,.(1)求与的夹角;(2)求;(3)若,求实数的值.【答案】(1);(2);(3)【解析】(1)根据向量数量积的运算律,利用可求得;根据数量积的定义可求得,根据可求得结果;(2)先利用平方运算,根据数量积运算律可求得,开方得到结果;(3)利用垂直关系可知,根据数量积运算律可构造出关于的方程,解方程求得结果.【详解】(1),即 (2) (3) 即,解得:【点睛】本题考查向量数量积的综合应用,涉及到向量数量积的运算律、已知数量积求向量夹角、向量模长的求解、垂直关系的向量表示等知识.17在中,分别为角,所对边的长,.(1)求角的值:(2)设函数,求的取值范围.【答案】(1)(2)【解析】(1)利用正弦定理、余弦定理化简已知条件,求得的值,进而求得的值.(2)首先化简为的形式,在根据的取值范围,结合三角函数值域的求法,求得的取值范围.【详解】解:(1)在中,因为,由正弦定理,所以即,由余弦定理,得又因为,所以(2)因为由(1)可知,且在中,所以,即所以,即所以的取值范围为【点睛】本小题主要考查利用正弦定理和余弦定理解三角形,考查降次公式、辅助角公式,考查三角函数值域的求法,属于中档题.18在平面直角坐标系中,己知圆,且圆被直线截得的弦长为2.(1)求圆的标准方程;(2)若圆的切线在轴和轴上的截距相等,求切线的方程;(3)若圆上存在点,由点向圆引一条切线,切点为,且满足,求实数的取值范围.【答案】(1);(2)或或或;(3)【解析】(1)将圆方程整理为标准方程形式,可知,得到圆心坐标和半径;由垂径定理可利用弦长构造出关于的方程,解方程求得,从而得到标准方程;(2)分为直线过原点和不过原点两种情况,分别假设直线方程,利用圆心到直线距离等于半径可构造方程求得结果;(3)设,根据且可整理出点轨迹方程为:;根据在圆上,则两圆有公共点,根据圆与圆位置关系的判定可构造不等式,解不等式求得结果.【详解】(1)圆方程可整理为: 圆的圆心坐标为,半径圆心到直线的距离:截得的弦长为:,解得:圆的标准方程为:(2)若直线过原点,可假设直线方程为:,即直线与圆相切 圆心到直线距离,解得:切线方程为:若直线不过原点,可假设直线方程为:,即圆心到直线距离,解得:或切线方程为或综上所述,切线方程为或或(3)假设,即又直线与圆相切,切点为 即:,整理得:又在圆上 两圆有公共点,解得:即的取值范围为:【点睛】本题考查直线与圆的位置关系、圆与圆的位置关系的应用问题;关键是明确直线与圆的位置关系通过圆心到直线的距离与半径之间的大小关系来确定;圆与圆的位置关系通过圆心距与两圆半径之和、半径之差的关系来确定.19如图,在地正西方向的处和正东方向的处各一条正北方向的公路和,现计划在和路边各修建一个物流中心和.(1)若在处看,的视角,在处看测得,求,;(2)为缓解交通压力,决定修建两条互相垂直的公路和,设,公路的每千米建设成本为万元,公路的每千米建设成本为万元.为节省建设成本,试确定,的位置,使公路的总建设成本最小.【答案】(1),;(2)当为,且为时,成本最小【解析】(1)根据等腰直角三角形的性质得到,利用,以及的展开公式列方程,解方程求得的值.(2)利用表示出,由此求得总成本的表达式,利用导数求得为何值时,总成本最小.【详解】解:(1)在中,由题意可知,则在中,在中因为,所以,于是所以答:,(2)在中,由题意可知,则同理在中,则令,则,令,得,记,当时,单调减;当时,单调增所以时,取得最小值,此时,所以当为,且为时,成本最小【点睛】本小题主要考查两角和的正切公式,考查解直角三角形,考查利用角度表示边长,考查实际应用问题的求解策略,考查利用导数求最小值,属于中档题.20己知函数在处的切线方程为,函数.(1)求函数的解析式;(2)求函数的极值;(3)设(表示,中的最小值),若在上恰有三个零点,求实数的取值范围.【答案】(1);(2)极小值,无极大值(3)【解析】(1)先求得函数导数,利用切点坐标和函数在时切线的斜率也即导数列方程组,解方程组求得的值,进而求得函数的解析式.(2)先求得的定义域和导
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号