资源预览内容
第1页 / 共10页
第2页 / 共10页
第3页 / 共10页
第4页 / 共10页
第5页 / 共10页
第6页 / 共10页
第7页 / 共10页
第8页 / 共10页
第9页 / 共10页
第10页 / 共10页
亲,该文档总共10页全部预览完了,如果喜欢就下载吧!
资源描述
普通高等学校招生全国统一考试数学真题绝密 启用前试卷类型:A2018年普通高等学校招生全国统一考试数学(全国卷2,文)本试题共23题,共150分,共4页.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i(2+3i)=A.3-2iB.3+2iC.-3-2iD.-3+2i2.已知集合A=1,3,5,7,B=2,3,4,5,则AB=A.3B.5C.3,5D.1,2,3,4,5,73.函数f(x)=ex-e-xx2的图像大致为4.已知向量a,b满足|a|=1,ab=-1,则a(2a-b)=A.4B.3C.2D.05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.0.6B.0.5C.0.4D.0.36.双曲线x2a2-y2b2=1(a0,b0)的离心率为3,则其渐近线方程为A.y=2xB.y=3xC.y=22xD.y=32x7.在ABC中,cos C2=55,BC=1,AC=5,则AB=A.42B.30C.29D.258.为计算S=1-12+13-14+199-1100,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+49.在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为A.22B.32C.52D.7210.若f(x)=cos x-sin x在0,a是减函数,则a的最大值是A.4B.2C.34D.11.已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1PF2,且PF2F1=60,则C的离心率为A.1-32B.2-3C.3-12D.3-112.已知f(x)是定义域为(-,+)的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+f(50)=A.-50B.0C.2D.50二、填空题:本题共4小题,每小题5分,共20分.13.曲线y=2ln x在点(1,0)处的切线方程为.14.若x,y满足约束条件x+2y-50,x-2y+30,x-50.则z=x+y的最大值为.15.已知tan-54=15,则tan =.16.已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30.若SAB的面积为8.则该圆锥的体积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第1721题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)记Sn为等差数列an的前n项和,已知a1=-7,S3=-15.(1)求an的通项公式;(2)求Sn,并求Sn的最小值.18.(12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,17)建立模型;y=-30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,7)建立模型:y=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.19.(12分)如图,在三棱锥P-ABC中,AB=BC=22,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.20.(12分)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程.(2)求过点A,B且与C的准线相切的圆的方程.21.(12分)已知函数f(x)=13x3-a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)证明:f(x)只有一个零点.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程(10分)在直角坐标系xOy中,曲线C的参数方程为x=2cos,y=4sin(为参数),直线l的参数方程为x=1+tcos,y=2+tsin(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(0,2),求l的斜率.23.选修4-5:不等式选讲(10分)设函数f(x)=5-|x+a|-|x-2|.(1)当a=1时,求不等式f(x)0的解集;(2)若f(x)1,求a的取值范围.数学(全国卷2,文)1.Di(2+3i)=2i+3i2=-3+2i.2.C集合A、B的公共元素为3,5,故AB=3,5.3.Bf(-x)=e-x-exx2=-f(x),f(x)为奇函数,排除A,令x=10,则f(10)=e10-1e101001,排除C、D,故选B.4.Ba(2a-b)=2a2-ab=2-(-1)=3.5.D设2名男同学为男1,男2,3名女同学为女1,女2,女3,则任选两人共有(男1,女1),(男1,女2),(男1,女3),(男1,男2),(男2,女1),(男2,女2)(男2,女3)(女1,女2),(女1,女3),(女2,女3)共10种,其中选中两人都为女同学共(女1,女2),(女1,女3)、(女2,女3)3种,故P=310=0.3.6.Ae=ca=3,c2a2=b2+a2a2=ba2+1=3.ba=2.双曲线交点在x轴上,渐近线方程为y=bax,渐近线方程为y=2x.7.Acos C=2cos2C2-1=-35,AB2=BC2+AC2-2BCACcos C=1+25+21535=32.AB=42.8.B由于N=0,T=0,i=1,N=0+11=1,T=0+11+1=12,i=3,N=1+13,T=12+14,i=5最后输出S=N-T=1-12+13-14+199-1100,一次处理1i与1i+1两项,故i=i+2.9.C取DD1的中点F,连接AC,EF,AF,则EFCD,故AEF为异面直线AE与CD所成的角.设正方体边长为2a,则易知AE=AC2+CE2=3a,AF=AD2+DF2=5a,EF=2a.cosAEF=(3a)2+(2a)2-(5a)223a2a=23.sinAEF=53.tanAEF=52.10.Cf(x)=cos x-sin x=222cosx-22sinx=2cosx+4,(方法1)作图如图所示.易知amax=34.(方法2)f(x)在2kx+42k+,kZ上为减函数,2k-4x2k+34,kZ,令k=0可知x-4,34,amax=34.11.D不妨设椭圆方程为x2a2+y2b2=1(ab0),F1,F2分别为椭圆的左、右焦点,则|PF1|+|PF2|=2a.F2PF1=90,PF2F1=60,3c+c=2a,即(3+1)c=2a.e=ca=23+1=2(3-1)(3-1)(3+1)=3-1.12.Cf(-x)=f(2+x)=-f(x),f(x+4)=f(x+2)+2=-f(x+2)=f(x).f(x)的周期为4.f(x)为奇函数,f(0)=0.f(2)=f(1+1)=f(1-1)=f(0)=0,f(3)=f(-1)=-f(1)=-2,f(4)=f(0).f(1)+f(2)+f(3)+f(4)=0.f(1)+f(2)+f(50)=f(49)+f(50)=f(1)+f(2)=2.13.y=2x-2y=(2ln x)=2x,当x=1时,y=2.切线方程为y=2(x-1),即y=2x-2.14.9由题意,作出可行域如图.要使z=x+y取得最大值,当且仅当过点(5,4)时,zmax=9.15.32tan-54=tan-tan541+tantan54=tan-11+tan=15,5tan -5=1+tan .tan =32.16.8SASB,SSAB=12SASB=8.SA=4.过点S连接底面圆心O,则SAO=30.SO=2,OA=23.V=13r2h=13(23)22=8.17.解 (1)设an的公差为d,由题意得3a1+3d=-15.由a1=-7得d=2.所以an的通项公式为an=2n-9.(2)由(1)得Sn=n2-8n=(n-4)2-16.所以当n=4时,Sn取得最小值,最小值为-16.18.解 (1)利用模型,该地区2018年的环境基础设施投资额的预测值为y=-30.4+13.519=226.1(亿元).利用模型,该地区2018年的环境基础设施投资额的预测值为y=99+17.59=256.5(亿元).(2)利用模型得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=-30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型得到的预测值226.1亿元的增幅明显偏低,而利用模型得到的预测值的增幅比较合理,说明利用模型得到的预测值更可靠.(以上给出了2种理由,答出其中任意一种或其他合理理由均可得分)19.解 (1)因为AP=CP=AC=4,O为AC的中点,所以OPAC,且OP=23.连接OB,因为AB=BC=22AC,所以ABC为等腰直角三角形,且OBAC,OB=12AC=2.由OP2+OB2=P
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号