资源预览内容
第1页 / 共27页
第2页 / 共27页
第3页 / 共27页
第4页 / 共27页
第5页 / 共27页
第6页 / 共27页
第7页 / 共27页
第8页 / 共27页
第9页 / 共27页
第10页 / 共27页
亲,该文档总共27页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
2021年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的1. 的绝对值是( )A. B. C. D. 【答案】A【解析】【分析】利用绝对值的定义直接得出结果即可【详解】解:的绝对值是:9故选:A【点睛】本题考查绝对值的定义,正确理解定义是关键,熟记负数的绝对值是它的相反数是重点2. 2020年国民经济和社会发展统计公报显示,2020年我国共资助8990万人参加基本医疗保险其中8990万用科学记数法表示为( )A. 89.9106B. 8.99107C. 8.99108D. 0.899109【答案】B【解析】【分析】将8990万还原为89900000后,直接利用科学记数法的定义即可求解【详解】解:8990万=89900000=,故选B【点睛】本题考查了科学记数法定义及其应用,解决本题的关键是牢记其概念和公式,本题易错点是含有单位“万”,学生在转化时容易出现错误3. 计算结果是( )A. B. C. D. 【答案】D【解析】【分析】利用同底数幂的乘法法则计算即可【详解】解:故选:D【点睛】本题考查同底数幂的乘法法则,正确使用同底数幂相乘,底数不变,指数相加是关键4. 几何体的三视图如图所示,这个几何体是( )A. B. C. D. 【答案】C【解析】【分析】根据三视图,该几何体的主视图可确定该几何体的形状,据此求解即可【详解】解:根据A,B,C,D三个选项的物体的主视图可知,与题图有吻合的只有C选项,故选:C【点睛】本题考查了由三视图判断几何体的知识,熟练掌握三视图并能灵活运用,是解题的关键5. 两个直角三角板如图摆放,其中,AB与DF交于点M若,则的大小为( )A. B. C. D. 【答案】C【解析】【分析】根据,可得再根据三角形内角和即可得出答案【详解】由图可得,故选:C【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键6. 某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为( )A. 23cmB. 24cmC. 25cmD. 26cm【答案】B【解析】【分析】设,分别将和代入求出一次函数解析式,把代入即可求解【详解】解:设,分别将和代入可得: ,解得 ,当时,故选:B【点睛】本题考查一次函数的应用,掌握用待定系数法求解析式是解题的关键7. 设a,b,c为互不相等的实数,且,则下列结论正确的是( )A. B. C. D. 【答案】D【解析】【分析】举反例可判断A和B,将式子整理可判断C和D【详解】解:A当,时,故A错误;B当,时,故B错误;C整理可得,故C错误;D整理可得,故D正确;故选:D【点睛】本题考查等式的性质,掌握等式的性质是解题的关键8. 如图,在菱形ABCD中,过菱形ABCD的对称中心O分别作边AB,BC的垂线,交各边于点E,F,G,H,则四边形EFGH的周长为( )A. B. C. D. 【答案】A【解析】【分析】依次求出OE=OF=OG=OH,利用勾股定理得出EF和OE的长,即可求出该四边形的周长【详解】HFBC,EGAB,BEO=BFO=90,A=120,B=60,EOF=120,EOH=60,由菱形的对边平行,得HFAD,EGCD,因为O点是菱形ABCD的对称中心,O点到各边的距离相等,即OE=OF=OG=OH,OEF=OFE=30,OEH=OHE=60,HEF=EFG=FGH=EHG=90,所以四边形EFGH是矩形;设OE=OF=OG=OH=x,EG=HF=2x,如图,连接AC,则AC经过点O,可得三角形ABC是等边三角形,BAC=60,AC=AB=2,OA=1,AOE=30,AE=,x=OE=四边形EFGH的周长为EF+FG+GH+HE=,故选A【点睛】本题考查了菱形的性质、矩形的判定与性质、等边三角形的判定与性质、勾股定理、直角三角形的性质等内容,要求学生在理解相关概念的基础上学会应用,能分析并综合运用相关条件完成线段关系的转换,考查了学生的综合分析与应用的能力9. 如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是( )A. B. C. D. 【答案】D【解析】【分析】根据题意两条横线和两条竖线都可以组成矩形个数,再得出含点A矩形个数,进而利用概率公式求出即可【详解】解:两条横线和两条竖线都可以组成一个矩形,则如图的三条横线和三条竖线组成可以9个矩形,其中含点A矩形4个,所选矩形含点A的概率是故选:D【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题10. 在中,分别过点B,C作平分线的垂线,垂足分别为点D,E,BC的中点是M,连接CD,MD,ME则下列结论错误的是( )A. B. C. D. 【答案】A【解析】【分析】设AD、BC交于点H,作于点F,连接EF延长AC与BD并交于点G由题意易证,从而证明ME为中位线,即,故判断B正确;又易证,从而证明D为BG中点即利用直角三角形斜边中线等于斜边一半即可求出,故判断C正确;由、和可证明再由、和可推出 ,即推出,即,故判断D正确;假设,可推出,即可推出由于无法确定的大小,故不一定成立,故可判断A错误【详解】如图,设AD、BC交于点H,作于点F,连接EF延长AC与BD并交于点GAD是的平分线,HC=HF,AF=AC在和中,AEC=AEF=90,C、E、F三点共线,点E为CF中点M为BC中点,ME为中位线,故B正确,不符合题意;在和中,即D为BG中点在中,故C正确,不符合题意;,AD是的平分线, ,故D正确,不符合题意;假设,在中,无法确定的大小,故原假设不一定成立,故A错误,符合题意故选A【点睛】本题考查角平分线的性质,三角形全等的判定和性质,直角三角形的性质,三角形中位线的判定和性质以及含角的直角三角形的性质等知识,较难正确的作出辅助线是解答本题的关键二、填空题(本大题共4小题,每小题5分,满分20分)11. 计算:_【答案】3【解析】【分析】先算算术平方根以及零指数幂,再算加法,即可【详解】解:,故答案为3【点睛】本题主要考查实数的混合运算,掌握算术平方根以及零指数幂是解题的关键12. 埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,底面正方形的边长与侧面等腰三角形底边上的高的比值是,它介于整数和之间,则的值是_【答案】1【解析】【分析】先估算出,再估算出即可完成求解【详解】解:;因为1.236介于整数1和2之间,所以;故答案为:1【点睛】本题考查了对算术平方根取值的估算,要求学生牢记的近似值或者能正确估算出的整数部分即可;该题题干前半部分涉及到数学文化,后半部分为解题的要点,考查了学生的读题、审题等能力13. 如图,圆O的半径为1,内接于圆O若,则_【答案】【解析】【分析】先根据圆的半径相等及圆周角定理得出ABO=45,再根据垂径定理构造直角三角形,利用锐角三角函数解直角三角形即可【详解】解:连接OB、OC、作ODABBOC=2A=120OB=OCOBC=30又ABO=45RtOBD中,OB=1BD=COS451=ODABBD=AD=AB=故答案为:【点睛】本题考查垂径定理、圆周角定理、特殊角锐角三角函数、正确使用圆性质及定理是解题关键14. 设抛物线,其中a为实数(1)若抛物线经过点,则_;(2)将抛物线向上平移2个单位,所得抛物线顶点的纵坐标的最大值是_【答案】 (1). 0 (2). 2【解析】【分析】(1)直接将点代入计算即可(2)先根据平移得出新的抛物线的解析式,再根据抛物线顶点坐标得出顶点坐标的纵坐标,再通过配方得出最值【详解】解:(1)将代入得:故答案为:0(2)根据题意可得新的函数解析式为:由抛物线顶点坐标得新抛物线顶点的纵坐标为:当a=1时,有最大值为8,所得抛物线顶点的纵坐标的最大值是故答案为:2【点睛】本题考查将抛物线的顶点坐标、将点代入代入函数解析式、利用配方法求最值是常用的方法三、(本大题共2小题,每小题8分,满分16分)15. 解不等式:【答案】【解析】【分析】利用去分母、去括号、移项、合并同类项、系数化为1即可解答【详解】,【点睛】本题考查了一元一次不等式的解法,熟练运用一元一次不等式的解法是解决问题的关键16. 如图,在每个小正方形的边长为1个单位的网格中,的顶点均在格点(网格线的交点)上(1)将向右平移5个单位得到,画出;(2)将(1)中的绕点C1逆时针旋转得到,画出【答案】(1)作图见解析;(2)作图见解析【解析】【分析】(1)利用点平移的规律找出、,然后描点即可;(2)利用网格特点和旋转的性质画出点,即可【详解】解:(1)如下图所示,为所求;(2)如下图所示,为所求;【点睛】本题考查了平移作图和旋转作图,熟悉相关性质是解题的关键四、(本大题共2小题,每小题8分,满分16分)17. 学生到工厂劳动实践,学习制作机械零件零件的截面如图阴影部分所示,已知四边形AEFD为矩形,点B、C分别在EF、DF上,求零件的截面面积参考数据:,【答案】5376cm2【解析】【分析】首先证明,通过解和,求出AE,BE,CF,BF,再根据计算求解即可【详解】解:如图,四边形AEFD为矩形, ,EF/AB, ,在中, 又 同理可得,答:零件的截面面积为53.76cm2【点睛】此题主要考查了解直角三角形,通过解和,求出AE,BE,CF,BF的长是解答此题的关键18. 某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列观察思考当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,规律总结(1)若人行道
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号