资源预览内容
第1页 / 共6页
第2页 / 共6页
第3页 / 共6页
第4页 / 共6页
第5页 / 共6页
第6页 / 共6页
亲,该文档总共6页全部预览完了,如果喜欢就下载吧!
资源描述
第二章 导数与微分数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学. 微分学与积分学统称为微积分学. 微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一. 恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像 17 世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘).积分的雏形可追溯到古希腊和我国魏晋时期,但微分概念直至 16 世纪才应运萌生. 本章及下一章将介绍一元函数微分学及其应用的内容.第一节 导数概念从 15 世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贾贸易得到大规模的发展,形成了一个新的经济时代. 而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展. 生产实践的发展对自然科学提出了新的课题,迫切要求力学、天文学等基础科学的发展,而这些学科都是深刻依赖于数学的,因而也推动了数学的发展. 在各类学科对数学提出的种种要求中,下列三类问题导致了微分学的产生: (1) 求变速运动的瞬时速度;(2) 求曲线上一点处的切线;(3) 求最大值和最小值.这三类实际问题的现实原型在数学上都可归结为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题. 牛顿从第一个问题出发,莱布尼茨从第二个问题出发,分别给出了导数的概念. 内容分布图示 引言 引例 1 引例 2 引例 3 导数的定义 几点说明 利用定义求导数与求极限(例 1、例 2) 例 3 例 4 例 5 例 6 例 7 左右导数 例 8 例 9 导数的几何意义 例 10 例 11 导数的物理意义 导数的经济意义 可导与连续的关系 例 13 例 14 例 15 例 16 内容小结 课堂练习 习题 2- 1 返回内容要点:一、引例: 引例 1 变速直线运动的瞬时速度; 引例 2 平面曲线的切线引例 3 产品总成本的变化率二、 导数的定义: xffxyxf )(limli)( 000注:导数概念是函数变化率这一概念的精确描述,它撇开了自变量和因变量所代表的几何或物理等方面的特殊意义,纯粹从数量方面来刻画函数变化率的本质: 函数增量与自变量增量的比值 是函数 在以 和 为端点的区间上的平均变化率,而导数xy0x则是函数 在点 处的变化率,它反映了函数随自变量变化而变化的快慢程度.0|xy 0根据导数的定义求导,一般包含以下三个步骤:1. 求函数的增量: );(xfxfy2. 求两增量的比值: ;3.求极限 .lim0xy三、左右导数定理 1 函数 在点 处可导的充要条件是:函数 在点 处的左、右)(fy0 )(xfy0导数均存在且相等.四、 用定义计算导数五、导数的几何意义六、 函数的可导性与连续性的关系定理 2 如果函数 在点 处可导,则它在 处连续.)(xfy00x注:上述两个例子说明,函数在某点处连续是函数在该点处可导的必要条件,但不是充分条件. 由定理 2 还知道,若函数在某点处不连续,则它在该点处一定不可导.在微积分理论尚不完善的时候,人们普遍认为连续函数除个别点外都是可导的. 1872年得多数学家魏尔斯特拉构造出一个处处连续但处处不可导的例子,这与人们基于直观的普遍认识大相径庭,从而震惊了数学界和思想界. 这就促使人们在微积分研究中从依赖于直观转向理性思维,大大促进了微积分逻辑基础的创建工作.例题选讲:导数概念的应用例 1(讲义例 1)求函数 在 处的导数 .3xy1)1(f例 2(讲义例 2)试按导数定义求下列各极限(假设各极限均存在). (1) ;)limaxffax (2) 其中,)(lim0xf.0)(f例 3(讲义例 4)求函数 (C 为常数)的导数.xf例 4(讲义例 5)设函数 求 及 .,sin)six4|)(inx例 5(讲义例 6)求函数 (n 为正整数) 的导数.xy例 6(讲义例 7)求函数 的导数.)1,0af例 7 求函数 的导数,(loga左右导数例 8(讲义例 3)求函数 在 处的导数.,sin)(xf0x例 9 设 为偶函数,且 存在. 证明)(xf .)(f例 10 求等边双曲线 在点 处的切线的斜率, 并写出在该点处的切线方程和xy12法线方程.用定义计算导数导数的几何意义例 11(讲义例 8)求曲线 在点 处的切线方程.xy)2,4(函数的可导性与连续性的关系例 12(讲义例 9)设某种产品的收益 R(元) 为产量 x(吨)的函数 04802x求 (1)生产 200 吨到 300 吨时总暇入的平均变化率;(2)生产 100 吨时收益对产量的变化率.例 13(讲义例 10)讨论函数 在 处的连续性与可导性.|)(xf例 14(讲义例 11)讨论函数 , 在 处的连续性与可导性0,1sinf 0x(图 2-1-2).例 15 设函数 问 取何值时, 为可导函数.10,)(2xxaf a)(xf例 16 设函数 ,2bef(1) 欲使 在 处连续, 为何值;)(a(2) 欲使 在 处可导, 为何值.xf0,在微积分理论尚不完善的时候,人们普遍认为连续函数除个别点外都是可导的. 1872年得多数学家魏尔斯特拉构造出一个处处连续但处处不可导的例子(如第七章第一节的Koch 雪花曲线描述的函数),这与人们基于直观的普遍认识大相径庭,从而震惊了数学界和思想界. 这就促使人们在微积分研究中从依赖于直观转向理性思维,大大促进了微积分逻辑基础的创建工作.课堂练习1.函数 在某点 处的导数 与导函数 有什么区别与联系?)(xf0)(0xf)(xf2.设 在 处连续, , 求 .a2afa3.求曲线 上与 x 轴平行的切线方程.32y莱布尼茨 (Friedrich , Leibniz,15971652)-博学多才的数学符号大师出生于书香门第的莱布尼兹是德国一们博学多才的学者。他的学识涉及哲学、历史、语言、数学、生物、地质、物理、机械、神学、法学、外交等领域。并在每个领域中都有杰出的成就。然而,由于他独立创建了微积分,并精心设计了非常巧妙而简洁的微积分符号,从而使他以伟大数学家的称号闻名于世。莱布尼兹对微积分的研究始于 31 岁,那时他在巴黎任外交官,有幸结识数学家、物理学家惠更斯等人。在名师指导下系统研究了数学著作,1673 年他在伦敦结识了巴罗和牛顿等名流。从此,他以非凡的理解力和创造力进入了数学前沿阵地。莱布尼兹在从事数学研究的过程中,深受他的哲学思想的支配。他的著名哲学观点是单子论,认为单子是“自然的真正原子事物的元素” ,是客观的、能动的、不可分割的精神实体。牛顿从运动学角度出发,以“瞬” (无穷小的“0” )的观点创建了微积分。他说dx 和 x 相比,如同点和地球,或地球半径与宇宙半径相比。在其积分法论文中,他从求曲线所围面积积分概念,把积分看作是无穷小的和,并引入积分符号 ,它是把拉丁文“Summa”的字头 S 拉长。他的这个符号,以及微积分的要领和法则一直保留到当今的教材中。莱布尼兹也发现了微分和积分是一对互逆的运算,并建立了沟通微分与积分内在联系的微积分基本定理,从而使原本各自独立的微分学和积分学成为统一的微积分学的整体。莱布尼兹是数字史上最伟大的符号学者之一,堪称符号大师。他曾说:“要发明,就要挑选恰当的符号,要做到这一点,就要用含义简明的少量符号来表达和比较忠实地描绘事物的内在本质,从而最大限度地减少人的思维劳动, ”正象印度阿拉伯数学促进算术和代数发展一样,莱布尼兹所创造的这些数学符号对微积分的发展起了很大的促进作用。欧洲大陆的数学得以迅速发展,莱布尼兹的巧妙符号功不可灭。除积分、微分符号外,他创设的符号还有商“a/b” ,比 “a:b”,相似“” ,全等“” ,并“” ,交“ ”以及函数和行列式等符号。牛顿和莱布尼茨对微积分都作出了巨大贡献,但两人的方法和途径是不同的。牛顿是在力学研究的基础上,运用几何方法研究微积分的;莱布尼兹主要是在研究曲线的切线和面积的问题上,运用分析学方法引进微积分要领的。牛顿在微积分的应用上更多地结合了运动学,造诣精深;但莱布尼兹的表达形式简洁准确,胜过牛顿。在对微积分具体内容的研究上,牛顿先有导数概念,后有积分概念;莱布尼兹则先有求积概念,后有导数概念。除此之外,牛顿与莱布尼兹的学风也迥然不同。作为科学家的牛顿,治学严谨。他迟迟不发表微积分著作流数术的原因,很可能是因为他没有找到合理的逻辑基础,也可能是“害怕别人反对的心理”所致。但作为哲学家的莱布尼兹比较大胆,富于想象,勇于推广,结果造成创作年代上牛顿先于莱布尼兹 10 年,而在发表的时间上,莱布尼兹却早于牛顿三年。虽然牛顿和莱布尼兹研究微积分的方法各异,但殊途同归。各自独立地完成了创建微积分的盛业,光荣应由他们两人共享。然而在历史上曾出现过一场围绕发明微积分优先权的激烈争论。牛顿的支持者,包括数学家泰勒和麦克劳林,认为莱布尼兹剽窃了牛顿的成果。争论把欧洲科学家分成誓不两立的两派:英国和欧洲大陆。争论双方停止学术交流,不仅影响了数学的正常发展,也波及自然科学领域,以致发展到英德两国之间的政治摩擦。自尊心很强的英国民族抱住牛顿的概念和记号不放,拒绝使用更为合理的莱布尼兹的微积分符号和技巧,致使英国在数学发展上大大落后于欧洲大陆。一场旷日持久的争论变成了科学史上的前车之鉴。莱布尼兹的科研成果大部分出自青年时代,随着这些成果的广泛传播,荣誉纷纷而来,他也越来越变得保守。到了晚年,他在科学方面已无所作为。他开始为宫廷唱赞歌,为上帝唱赞歌,沉醉于研究神学和公爵家族。莱布尼兹生命中的最后 7 年,是在别人带给他和牛顿关于微积分发明权的争论中痛苦地度过的。他和牛顿一样,都在终生未娶。1761 年 11月 14 日,莱布尼兹默默地离开人世,葬在宫廷教堂的墓地。戎马不解鞍,铠甲不离傍。冉冉老将至,何时返故乡?神龙藏深泉,猛兽步高冈。狐死归首丘,故乡安可忘!牛顿(Newton , lsaac,16431727 )自然和自然规律隐藏在黑夜里,上帝说“降生牛顿”.于是世界就充满光明.Newtan 墓志铭数学和科学中的巨大进展 , 几乎总是建立在作出一点一点滴贡献的许多人的工作之上.需要一个人来走那最高和最后的一步,这个人要能够敏锐地从纷乱的猜测和说明中清理出前人的有价值的想法,有足够的想象力把这些碎片重新组织起来,并且足够大胆地制定一个宏伟的计划.在微积分中,这个人就是牛顿.牛顿(1642-1727) 生于英格兰乌尔斯托帕的一个小村庄里 ,父亲是在他出生前两个月去世的,母亲管理着丈夫留下的农庄,母亲改嫁后,是由外祖母把他抚养大.并供他上学.他从小在低标准的地方学校接受教育,除对机械设计有兴趣外,是个没有什么特殊的青年人,1661 年他进入剑桥大学的三一学院学习,大学期间除了巴罗(Barrow)外,他从他的老师那里只得到了很少的一点鼓舞,他自己做实验并且研究当时一些数学家的著作,如 Descartes 的几何 ,Galileo,Kepler 等的著作。大学课和刚结束,学校因为伦敦地区鼠疫流行而关闭。他回到家乡,渡过了 1665 年和 1666 年,并在那里开始了他在机械、数学和光学上伟大的工作,这时他意识到了引力的平方反比定律(曾早已有人提出过) ,这是打开那无所不包的力学科学的钥匙。他获得了解决微积分问题的一般方法,并且通过光学实验,作出了划时代的发现,即象太阳光那样的白光,实际上是从紫到红的各种颜色混合而成的。
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号