资源预览内容
第1页 / 共24页
第2页 / 共24页
第3页 / 共24页
第4页 / 共24页
第5页 / 共24页
第6页 / 共24页
第7页 / 共24页
第8页 / 共24页
第9页 / 共24页
第10页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
26.1.2二次函数y=ax2 的图象和性质,故县一中 数学组2011年11月28日,回顾旧知,函数图象画法,列表,描点,连线,描点法,回忆: 反比例函数图像的画法,探究新知,你会用描点法画二次函数y=x2的图象吗?,观察y=x2的表达式,选择适当x值,并计算相应的y值,完成下表:,9,4,1,1,0,4,9,描点,连线,y=x2,8,yx2,二次函数y=ax2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线。,喷泉(1),(1)二次函数y=-x2的图象是什么形状?,做一做,你能根据表格中的数据作出猜想吗?,(2)先想一想,然后作出它的图象,(3)它与二次函数y=x2的图象有什么关系?,在学中做在做中学,x,y,0,-4,-3,-2,-1,1,2,3,4,-10,-8,-6,-4,-2,2,-1,描点,连线,y=-x2,(0,0),(0,0),y轴,y轴,在x轴的上方(除顶点外),在x轴的下方(除顶点外),向上,向下,当x=0时,最小值为0。,当x=0时,最大值为0。,二次函数y=ax2的性质,、顶点坐标与对称轴,、位置与开口方向,、增减性与极值,2、练习2,3、想一想,在同一坐标系内,抛物线y=x2与抛物线 y= -x2的位置有什么关系? 如果在同一坐标系内 画函数y=ax2与y= -ax2的图象,怎样画才简便?,4、练习4,动画演示,下面是两个同学画的 y=0.5x2 和 y=-0.5x2的图象,你认为他们的作图正确吗?为什么?,1.列表:,2.描点:,3.连线:,顶点坐标,y=x2,y=2x2,1.列表:,2.描点:,3.连线:,y=-x2,y=-2x2,y=x2,y=2x2,函数y=ax2+bx+c(a0)中,|a|越大,抛物线开口越小;|a|越小,抛物线开口越大。,当a0时,在对称轴的左侧,y随着x的增大而减小。,当a0时,在对称轴的右侧,y随着x的增大而增大。,当a0时,在对称轴的左侧,y随着x的增大而增大。,当a0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且 向上无限伸展; 当a0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大。当x=0时函数y的值最小。当a0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大。,二次函数y=ax2的性质,4.函数y=ax2+bx+c(a0)中, 5.关于x轴对称的二次函数图像。|a|越大,抛物线开口越小;|a|越小,抛物线开口越大。,做一做,(1)抛物线y=2x2的顶点坐标是 ,对称轴是 , 在对称轴 侧,y随着x的增大而增大;在对称轴 侧, y随着x的增大而减小,当x= 时,函数y的值最小,最小 值是 ,抛物线y=2x2在x轴的 方(除顶点外).,(2)抛物线 在x轴的 方(除顶点外),在对称轴的左侧,y随着x的 ;在对称轴的右侧,y随着x的 ,当x=0时,函数y的值最大,最大值是 ,当x 0时,y0.,y=-2x2,我有哪些收获呢?与大家共分享!,学 而 不 思 则 罔,回头一看,我想说,还有什么疑问吗?,再见,2、根据左边已画好的函数图象填空:(1)抛物线y=2x2的顶点坐标是 ,对称轴是 ,在 侧,y随着x的增大而增大;在 侧,y随着x的增大而减小,当x= 时,函数y的值最小,最小值是 ,抛物线y=2x2在x轴的 方(除顶点外)。,(2)抛物线 在x轴的 方(除顶点外),在对称轴的左侧,y随着x的 ;在对称轴的右侧,y随着x的 ,当x=0时,函数y的值最大,最大值是 ,当x 0时,y0.,(0,0),y轴,对称轴的右,对称轴的左,0,0,上,下,增大而增大,增大而减小,0,4、已知抛物线y=ax2经过点A(-2,-8)。 (1)求此抛物线的函数解析式; (2)判断点B(-1,- 4)是否在此抛物线上。 (3)求出此抛物线上纵坐标为-6的点的坐标。,解(1)把(-2,-8)代入y=ax2,得-8=a(-2)2,解出a= -2,所求函数解析式为y= -2x2.,(2)因为 ,所以点B(-1 ,-4)不在此抛物线上。,(3)由-6=-2x2 ,得x2=3, 所以纵坐标为-6的点有两个,它们分别是,
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号