资源预览内容
第1页 / 共8页
第2页 / 共8页
第3页 / 共8页
第4页 / 共8页
第5页 / 共8页
第6页 / 共8页
第7页 / 共8页
第8页 / 共8页
亲,该文档总共8页全部预览完了,如果喜欢就下载吧!
资源描述
一、资产池分池概述零售风险暴露没有初级法和高级法的区别,只要实施内部评级法,银行必须使用分池(Pool)技术来自行估计违约概率、违约损失率和违约风险暴露。商业银行首先将零售风险暴露分为个人住房抵押贷款、合格循环零售风险暴露、其他零售风险暴露三大类,在此基础上建立细分的零售风险暴露的风险分池体系。按照新资本协议的要求,同一资产池内的零售风险暴露的风险程度应保持一致,资产池间的资产具有风险的异质性。银行在将贷款分到资产池中时至少要考虑如下风险要素: 借款人风险特征,包括债务人类别和人口统计特征等,如收入状况、年龄、职业、客户信用评分、地区等。 债项风险特征,包括产品和抵质押品的风险特征,如抵质押方式、抵质押比例、担保、优先性、账龄等。 贷款的逾期:银行分别确定逾期贷款和未逾期贷款特别地,对于已经违约和尚未违约的贷款,应分别进行风险划分;对于数据缺失的零售贷款,数据缺失的程度应作为风险分池的一个因素。各资产池之间借款人和贷款的分布应合理,避免单个池中零售暴露过于集中。按照银监会的规定,若单个资产池中风险暴露超过该类零售总量的 30%,银行需要向银监会证明该资产池中的贷款具有风险同质性,并且不影响估计该池的风险参数。对于资产池划分,银行可根据自身对于资产池划分精细化程度的需求以及数据质量情况,分别建立独立的 PD/LGD/EAD 资产池(即每笔贷款同时对应一个 PD 池、一个 LGD 池,一个 EAD 池) ,也可以建立综合的 PD/LGD/EAD 资产池(即每笔贷款只对应一个资产池,每个资产池具有 PD、LGD、EAD 三个参数) 。二、资产池划分方法从方法论的角度,资产池划分方法可以分为:1. 基于申请评分卡和行为评分卡:以评分卡的模型细分为基础,按照分数的高低划分为不同的资产池。2. 决策树:利用决策树模型,通过递归的方法,将资产划归到不同的池中。3. 聚类:使用多元统计聚类方法,将具有类似特征的资产划分为同一资产池。4. 专家判断法:当数据不充分时,可依靠专家经验进行资产池的划分。以上方法不是独立的,可进行组合使用,国际先进银行多采用基于评分卡的方法,对于没有建立评分卡的产品,则辅以其它的方法。从 Use Test(使用测试)原则出发,资产池划分方法分为两类:自下而上(Bottom-up):指已有评分模型对每一笔贷款进行了风险评分,根据风险评分,进行层层聚类。自下而上(Top-down):在没有风险评分模型的情况下,结合业务经验,通过统计分析确定分池指标,从总体资产组合出发,层层划分后获得资产池。此种方式较为粗糙,PD、LGD、EAD 等参数估计的精确程度较差。1.1.1.1风险参数 -PD按照新资本协议的规定,对于零售风险暴露,违约的定义可以用于特定债项层面,而不应用在借款人层面。借款人对一项债务违约,不强迫银行将借款人对银行集团的所有债务都按照违约处理。违约定义上的这一点差别导致了零售暴露和公司暴露内部评级体系本质上的额差别,公司暴露最重要的架构就是客户和债项的二维评级;零售暴露则基于债项层面来实现分池技术,同一客户的不同债项可以分到不同的池,而具有不同的违约概率。一、PD 模型建设PD 池的划分过程即是 PD 模型建设的过程,一般情况下,都需要结合使用自上而下或者自下而上的方法,无论采用哪种方法,PD 模型都最终表现为决策树的形式,不同之处在于决策树节点的确定方法和确定顺序。自上而下的方法,其决策树节点的确定顺序是从“树根”到“叶子”的方法,是逐步细分的过程。自下而上的方法,其决策树节点的顺序是从“叶子”到“树根” ,是逐步聚类的过程。在 PD 模型建设过程中,需要回答两个问题,一是每一步分杈的标准是什么?二是什么时候停止分杈?决策树中每个节点的判定标准是是否能够将资产池进行有效区分,即不同资产池间是否满足风险异质性;决策树最后节点确定,是资产池内的贷款具有了风险同质性,除了同质性,为了保证模型的稳定性,每个资产池应具有一定数量的贷款,保证风险参数-违约概率、违约损失率、违约风险暴露计量的统计显著性。二、违约概率校准违约概率校准的作用有两个,一是对于已经开发了风险评分卡的敞口,其违约定义与新资本协议规定的并不一致,需要校准;二是没有开发风险评分卡的敞口,但是有相近的产品的评分卡可以有效排序,需要校准。违约概率校准的前提是风险驱动因子依然有效,风险评分依然有效排序,但是因为违约定义的变化导致排序对应的违约概率不一致。校准的过程如下图所示:3 0 0 3 4 93 5 0 3 9 94 0 0 4 4 94 5 0 4 9 95 0 0 5 9 96 0 0 6 9 97 0 0 7 9 98 0 0 9 0 0申请评分3 0 0 3 4 93 5 0 3 9 94 0 0 4 4 94 5 0 4 9 95 0 0 5 9 96 0 0 6 9 97 0 0 7 9 98 0 0 9 0 0行为评分1234567891 01 . 73 . 04 . 96 . 17 . 28 . 59 . 81 1 . 21 3 . 11 5 . 4映射R a n k o r d e r排序表违约概率 ( % )三、PD 值的长期平均估计按照新资本协议规定,用于计算监管资本的违约概率应该是长期平均违约概率,以保持监管资本的谨慎性原则。资产池划分方案初步确定后,即可获得每个资产池每年的 PD 值,然后要最终确定该资产池的 PD,还需要将每年的 PD 校准到已违约加权的长期平均 PD,并要充分考虑经济衰退的影响。计算长期平均 PD 时,应该是违约加权而不是简单平均,主要目的是为了平抑业务量的波动。如下表:2004 年 2005 年 2006 年 2007 年 2008 年PD 8% 12% 6% 4% 5%贷款总数 70 60 100 200 300简单平均的公式为(r 1+ r2+ r3+ r4+ r5)/5,其中 r 为违约率,则平均违约率为 7.0%。违约加权的公式为(r 1m1+ r2m2+ r3m3+ r4m4+ r5m5)/(m 1+ m2+ m3+ m4+ m5) ,其中 r 为违约率,m 为贷款总数,则平均违约率为 5.72%。在经济衰退期,即使客户群和风险管理水平没有发生太大的变化,PD 也会有明显上升。新资本协议要求计算违约加权的长期平均 PD 的过程,要充分考虑经济衰退的影响,那 PD 得长期平均估计应该覆盖一个完整的经济周期。四、成熟性效应成熟性效应是指贷款的违约概率与客户账龄密切相关,在贷款初期,违约概率非常低,在发放贷款一段时间后违约概率才达到高峰。最典型的例子就是住房抵押贷款,国外的研究表明,住房抵押贷款发放初期违约概率较低,知道 45 年后违约概率才达到高峰,而国内住房贷款抵押贷款提前还贷十分严重,一般在 34 年违约概率达到成熟性效应高峰。对于具有成熟性效应的产品的新客户,由于违约表现期(通常设为 12 个月)时间跨度不够长,客户违约行为未充分表现,导致监管资本的当前计提不足无法覆盖未来的风险。如果新客户量比较大,到成熟时,监管资本会发生异常波动。成熟性效应解决方法是对违约概率进行成熟性效应因子调整。当违约率趋于稳定时,则可认为成熟性效应已经完全呈现,由此可以计算出成熟性效应因子。假设违约率稳定时的违约率为 8.45%,而对于开户 1 年的客户观察期内的违约率为 4.24%,则开户 1 年的客户的成熟性因子为 8.45%/4.24%=2。是否需要进行成熟性效应因子调整,与新客户占整体客户的比例有关,如果新饿虎占比很小,成熟性效应的影响比较小,可以不做调整;如果新客户占比比较稳定,由于在未来总会存在低违约的新客户,监管资本会比较稳定,也可以不做调整。1.1.1.2风险参数 -LGD同非零售风险暴露一样,零售暴露违约损失率的计算公式为: ( 回收金额 回收成本 )t( 1 + 折现率 )t违约敞口L G D = 1 - 在建立 PD 模型时,要考虑模型样本的因变量是否违约,而对于 LGD 模型,模型样本的因变量是历史违约损失率,其计算过程包括三大关键点,即回收现金流(有效催收窗口) 、回收成本、折现率,计算难度远超过是否违约。一、有效催收窗口回收现金流,虽然在理论上都是历史上可以观察到的,但难点在于很多不良贷款在账上一挂就是多年,或者因破产、押品处理等法律因素,不良贷款最终回收金额的确认需要多年的时间。为了全面地估计历史回收额,需要很长的历史表现期,而历史数据的积累时间长度是有限的。通过有效催收窗口的方法可以解决这个问题。贷款的回收金额是一个时间序列,RC1, ,RC 2, 。 。 。RC t, , 。 。 。RC n,n ,理论上,只要贷款仍有拖欠余额,银行就不断催收,贷款就有回收的可能,即 RCt, =0。在实际催收业务中,不良贷款催收到一定程度就很难有还款,即超过某一时间点 m 时,则 ,则可以确认时间点 m 为有效催收时间点, R C t 0t = m在后续的模型建设中,只研究前 m 个回收现金流 RC1, , RC2, 。 。 。RC t, , 。 。 。RC m。 。二、催收成本新资本协议规定催收成本包括直接成本和间接成本,但对直接成本和间接成本的具体内涵未作详细界定。中国银监会对此进行了进一步的明确,指出“直接损失或成本是指能够归结到某笔具体债项的损失或成本,包括本金和利息损失、抵押品清收成本或法律诉讼费用等。间接损失或成本是指商业银行因管理或清收违约债项产生的但不能归结到某一笔具体债项的损失或成本。催收成本的计量是各国银行面临的一个普遍问题,国外银行的问题在于催收成本的分摊,而中国的商业银行,相关 IT 系统建设落后,成本信息没有记录,更难以进行成本分摊。为此银行需要对该部分数据进行补录,由于没有数据可查,数据补录只能依靠专家经验,补录数据项的设计不宜过细,但至少要覆盖如下几个维度:不同产品的催收成本,不同时间/年份的催收成本,不同催收手段的催收成本,不同逾期程度客户的催收成本。三、折现率折现率反映的是银行资金的时间价值。在中国金融市场,可以选择的折现率有贷款基准利率、合同贷款利率、资本要求回报率、存款利率、国债利率、银行内部资金成本等。新资本协议要求考虑“折扣效应” ,但采用一个什么样的折现率, 新资本协议和中国银监会未作详细规定。折现率的计算可以采用以下几种方法: 采用风险调整后折现率对回收现金流折现,该折现率为无风险利率与反映回收和清收成本现金流风险的溢价之和; 将回收和清收成本转化为确定性等价现金流,并采用无风险利率对等价现金流折现; 同时对折现率、回收率和清收成本进行风险调整,且前后调整原则一致。从理论上讲,通过对回收不确定性现金流建立金融学模型,是可以计量出相对应的风险补偿的,期权调整利差模型可能是比较合适的选择,但是,如何描述回收现金流的不确定性是无法回避的难题。四、LGD 资产池当回收金额、回收成本、折现率的计量得到解决,就可以计算每笔债项的 LGD,然后可以以此为因变量,类似于 PD 池开发,采用自下而上或自上而下的方法。如前所述,LGD 的分布存在严重的双峰现象,特别是 LGD 取值为 0 和 1 的比重非常大,对于零售暴露,LGD 取值为 0 的现象更为突出。数据特征决定模型的方法论, LGD 模型应该选择决策树模型或构造样本 logistic 回归。LGD 池划分的风险驱动因素(自变量)可选择债项或客户信息,例如客户年龄、账龄、已回收拖欠比例等。PD 模型基本分组是申请评分和行为评分模型,而 LGD 模型的基本分组时违约客户模型和非违约客户模型。LGD 分池过程中,同质性和异质性的处理,以及决策树最后节点的确定,与 PD 池的方法类似。LGD 的长期平均估计也应该是一
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号