资源预览内容
第1页 / 共3页
第2页 / 共3页
第3页 / 共3页
亲,该文档总共3页全部预览完了,如果喜欢就下载吧!
资源描述
研究生学位课高等量子力学教学大纲课程编号: 课程名称:高等量子力学学时:80 学分:4 开课学期:1任课教师:曾国模 教师代码:104622 教师职称:教授教师梯队:曾国模教授,张海霞副教授,王海军讲师1、课程目的、任务及对象量子力学是关于物质世界运动规律的基本理论,是现代物理学的基础和支柱。量子力学建立一百多年来,已为大量实验所精确检验,解释了范围极为广泛的自然现象,取得了前所未有的成功。它不仅深入到物理学的各个领域,在化学、生命科学、计算机科学等领域也得到广泛的应用。量子力学是一门发展中的科学理论,近 20 年来对量子力学基础的理论探索和实验验证有了长足的进步,揭示出一系列全新的物理现象。这些研究工作现已成为当代物理学一个非常活跃、深具基本意义、甚至会再次产生革命性进展的领域。高等量子力学课程与本科生量子力学课相衔接,授课对象为新入学的研究生。因研究生来源较广,其本科阶段开设的量子力学课的深浅不一,因此本课程的部分内容与本科生量子力学课有所重叠。本课程的教学目的是使学生的量子力学知识更为全面、系统和深入,一方面为研究生学习阶段的后续课程,如量子电动力学、量子场论、多体理论与格林函数方法,原子核理论和固体理论等提供理论准备,同时也为他们开展科研工作打好基础。本课程主要包括对称性与守恒定律,角动量理论(包含 D 函数,不可约张量等) ,二次量子化方法,散射的形式化理论,单电子的相对论量子力学,路径积分,量子力学新进展等内容。2、授课的具体内容第一章 量子力学中的对称性1-1对称性在量子力学中的表述1-2对称性与守恒律1-3时间反演对称性1-4对称性的应用第二章 角动量理论2-1角动量算符的定义,本征值和矩阵元的计算2-2两角动量算符和的本征值和本征函数2-3C-G 系数的解析表达式及其性质2-4三个角动量耦合Racah 系数;6- j 符号2-5四个角动量耦合9-j 符号第三章 角动量本征函数在转动变换下的性质;D 函数3-1D 函数转动算符的矩阵表示3-2D 函数的乘积三个球谐函数积分公式3-3球谐函数加法定理3-4D 函数作为欧拉角的函数第四章 不可约张量算符4-1不可约张量算符的定义及其代数运算规则4-2不可约张量算符的实例4-3Wigner-Eckart 定理4-4一阶张量投影定理第五章 二次量子化方法5-1中心场近似5-2N 个全同粒子体系的波函数5-3粒子数表象5-4粒子数表象中费米子体系态矢量及力学量的表示5-5Wick 定理5-6粒子数表象中玻色子体系的态矢量第六章 散射理论6-1散射问题6-2势散射的格林函数解法6-3李普曼许温格方程6-4散射的形式理论第七章 相对论量子力学7-1Klein-Gordon 方程7-2Dirac 方程7-3Dirac 方程的协变性7-4电磁场中的 Dirac 方程7-5中心力场中的 Dirac 方程,类氢原子第八章 路径积分8-1传播子的路径积分表示8-2路径积分的基本思想8-3路径积分的计算方法第九章 量子力学新进展9-1Which-Way 实验9-2EPR 佯谬及其实验检验9-3量子态的隐形传输9-4量子光学初步3、实践性环节部分内容(如角动量理论)要求学生能够与小型的研究课题结合起来,在学习基本理论的同时,接受科研训练。4、本课程学习的基本要求通过本课程的学习,要求学生深刻理解对称性在现代物理学中的重要性,熟练掌握量子力学中的对称性,对称性与守恒律的关系,对称性的应用;熟练掌握角动量理论、D 函数的性质、不可约张量算符的有关理论及其应用;熟练掌握二次量子化方法及其应用;初步掌握相对论量子力学的基本方程、方程的协变性和简单问题的解;初步掌握路径积分的基本思想和计算方法;了解量子力学的最新进展。5、预备知识本科生量子力学;线性代数;数学物理方法6、参考文献 1 曾谨言, 量子力学 ,卷 I,科学出版社,2000;卷 II,科学出版社,2001 4 余寿绵, 高等量子力学 ,山东科学技术出版社,1985 5 徐在新, 高等量子力学 ,华东师范大学出版社,1994 3 杨泽森, 高等量子力学 ,北京大学出版社,1995 6 钱诚德, 高等量子力学 ,上海交通大学出版社,1998 2 喀兴林, 高等量子力学 ,高等教育出版社,1999 7 倪光炯,陈苏卿, 高等量子力学 (第二版) ,复旦大学出版社, 2004 8 曾谨言,裴寿镛, 量子力学新进展 (第一辑) ,北京大学出版社, 2000 9 曾谨言,裴寿镛,龙桂鲁, 量子力学新进展 (第二辑) ,北京大学出版社,2001 10 曾谨言,龙桂鲁,裴寿镛, 量子力学新进展 (第三辑) ,清华大学出版社,2003 11 P. A. Dirac, The Principles of Quantum Mechanics, 4th ed., 1958, Oxford University Press.( 量子力学原理 ,陈咸亨译,科学出版社,1979) 12 L. D. Landau and M. E. Lifshitz, Quantum Mechanics, Non-relativistic Theory, Pergamon Press, 1977. 量子力学(非相对论理论) ,严肃译,人民教育出版社, (上册) ,1980;(下册) ,1981 13 J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics, Mc Graw-Hill BookCompany, 1964. (相对论量子力学 ,纪哲锐,苏大春译,科学出版社,1984) 14 R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, Inc., 1965 15 A. Messiah, Mecanique Quantique I, II, Dunod, Paris, 1973. (量子力学第一卷, 苏汝铿,汤加镛译,科学出版社,1986;第二卷,陈学俊,余加莉译,科学出版社,1986) 16 J. J. Sakurai, Modern Quantum Mechanics, John Wiley & Sons, Inc., 19947、考核方式通过作业随时了解同学们对讲授内容的消化理解程度,作业情况计入期末总成绩。布置一些科研小课题,作为对课堂知识的拓展,培养学生运用量子力学的方法解决真实的物理问题的能力,成绩以适当方式计入总成绩。最后,通过期末闭卷考试较全面地考察同学们对本课程基本内容的理解和掌握情况。
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号