资源预览内容
第1页 / 共7页
第2页 / 共7页
第3页 / 共7页
第4页 / 共7页
第5页 / 共7页
第6页 / 共7页
第7页 / 共7页
亲,该文档总共7页全部预览完了,如果喜欢就下载吧!
资源描述
SAS 数据分析通过一学期的学习,我基本掌握了 SAS 的基本编程,学会了用 SAS 对一些相关数据的分析,并写出实验报告,还能简单的读取一些 SAS 数据和文件了解一些背景问题。 SAS 是一个综合的统计分析系统,它由多个功能模块组合而成。本学期我们主要学习了 7 章内容,分别介绍了对 SAS 数据集的操作,包括如何建立和管理 SAS 数据集,以及如何在数据集中更改变量的属性,还有数据集的拆分、合并、转置、筛选等操作。数据整理时今次那个统计分析的必要前提,也是熟练使用 SAS 系统的一项基本技能。本学期还介绍了各种常用的统计方法,包括探索性分析、假设检验、方差分析、非参数检验、回归分析、聚类分析、判别分析、因子分析、时间序列分析等多个专题。每个专题集邮相关理论的简单讲解,也配有使用的案例操作,理论与实践结合能够使学生快速获得使用 SAS 解决实际问题的能力;每章最后都给出了几个习题,以便学生进行练习而提高应用水平。最后还有一些基本的 SAS 中的命令,经过老师的悉心指导以及上机实验,我们已经基本能够较为熟练的操作该软件了,接下来我将就一个实例,用我所学的聚类分析来展示下我学习的成果。XX 年全国 30 个省、市、自治区经济发展的基本情况 地区 北京天津河北山西地区 X1 X2 X3 X4 X5 X6 X7 X8 北京 1394.89 2505 519.01 8144 373.9 117.3 112.6 843.43 天津 920.11 2720 345.46 6501 342.8 115.2 110.6 582.51 河北 2849.52 1258 704.87 4839 2033.3 115.2 115.8 1234.85 山西 1092.48 1250 290.9 4721 717.3 116.9 115.6 697.25 内蒙 832.88 1387 250.23 4134 781.7 117.5 116.8 419.39 辽宁 2793.37 2397 387.99 4911 1371.1 116.1 114 840.55 吉林 1129.2 1872 320.45 4430 497.4 115.2 114.2 762.47黑龙江 2014.53 2334 435.73 4145 824.8 116.1 114.3 1240.37 上海 2462.57 5354 996.48 9279 207.1 118.7 113 1642.95 江苏 5155.25 1926 1434.95 5943 1025.5 115.8 114.3 2026.64 浙江 3524.79 2249 1006.39 6619 754.4 116.6 113.5 916.59 安徽 2003.58 1254 474 4609 908.3 114.8 112.7 824.14 福建 2160.52 2320 553.97 5857 609.3 115.2 114.4 433.67 江西 1205.11 1182 282.84 4211 411.7 116.9 115.9 571.84 山东 5002.34 1527 1229.55 5145 1196.6 117.6 114.2 2207.69 河南 3002.74 1034 670.35 4344 1574.4 116.5 114.9 1367.92 湖北 2391.42 1527 571.86 4685 849 120 116.6 1200.72 湖南 2195.7 1408 422.61 4797 1011.8 119 115.5 843.83 广东 5381.72 2699 1639.83 8250 656.5 114 111.6 1396.35广西 1606.15 1314 382.59 5105 556 118.4 116.4 554.97 海南 364.17 1814 198.35 5340 232.1 113.5 111.3 64.33 四川 3534 1261 822.54 4645 902.3 118.5 117 1431.81 贵州 630.07 942 150.84 4475 301.1 121.4 117.2 324.72 云南 1206.68 1261 334 5149 310.4 121.3 118.1 716.65 西藏 55.98 1110 17.87 7382 4.2 117.3 114.9 5.57 陕西 1000.03 1208 300.27 4396 500.9 119 117 600.98 甘肃 553.35 1007 114.81 5493 507 119.8 116.5 468.79 青海 165.31 1445 47.76 5753 61.6 118 116.3 105.8 宁夏 169.75 1355 61.98 5079 121.8 117.1 115.3 114.4 新疆 834.57 1469 376.95 5348 339 119.7 116.7 428.76 衡量一个地区经济发展的基本情况,可以采用如下所列的 8 项经济指标。表中 X1 为GDP;X5 为货物周转量;X2 为居民消费水平;X6 为居民消费价格指数;X3 为固定资产投资;X7 为上品零售价格指数; X4 为职工平均工资;X8 为工业总产值。 SAS 编程如下:data text1; input X1-X8; cards; X1 X2 X3 X4 X5 X6 X7 X8 1394.89 2505 519.01 8144 373.9 117.3 112.6 843.43 920.11 2720 345.46 6501 342.8 115.2 110.6 582.51 2849.52 1258 704.87 4839 2033.3 115.2 115.8 1234.85 1092.48 1250 290.9 4721 717.3 116.9 115.6697.25 832.88 1387 250.23 4134 781.7 117.5 116.8 419.39 2793.37 2397 387.99 4911 1371.1 116.1 114 1840.55 1129.2 1872 320.45 4430 497.4 115.2 114.2 762.47 2014.53 2334 435.73 4145 824.8 116.1 114.3 1240.37 2462.57 5354 996.48 9279 207.1 118.7 1131642.95 5155.25 1926 1434.95 5943 1025.5 115.8 114.3 2026.64 3524.79 2249 1006.39 6619 754.4 116.6 113.5 916.59 2003.58 1254 474 4609 908.3 114.8 112.7 824.14 2160.52 2320 553.97 5857 609.3 115.2 114.4 433.67 1205.11 1182 282.84 4211 411.7 116.9 115.9 571.84 5002.34 1527 1229.55 5145 1196.6 117.6 114.2 2207.69 3002.74 1034 670.35 4344 1574.4 116.5 114.9 1367.92 2391.42 1527571.86 4685 849 120 116.6 1200.72 2195.7 1408 422.61 4797 1011.8 119 115.5 843.83 5381.72 2699 1639.83 8250 656.5 114 111.6 1396.35 1606.15 1314 382.59 5105 556 118.4 116.4 554.97 364.17 1814 198.35 5340 232.1 113.5 111.3 64.33 3534 1261 822.54 4645 902.3 118.5 117 1431.81 630.07 942 150.84 4475 301.1 121.4 117.2 324.72 1206.68 1261 334 5149 310.4 121.3 118.1 716.65 55.98 1110 17.87 7382 4.2 117.3 114.9 5.57 3 1000.03 1208 300.27 4396 500.9 119 117 600.98 553.35 1007 114.81 5493 507 119.8 116.5 468.79 165.31 1445 47.76 5753 61.6 118 116.3 105.8 169.75 1355 61.98 5079 121.8 117.1 115.3 114.4 834.57 1469 376.95 5348 339 119.7 116.7 428.76 ; run; ; proc varclus data=text1 centroid maxc=3; var X1-X8; run; Cluster summary for 1 cluster Cluster Variation Proportion Cluster Members Variation Explained Explained 1 8 8 1.955134 0.2444 Total variation explained = 1.955134 Proportion = 0.2444 以上是 SAS 的一部分运行结果,这里用中心分量法进行主成分聚类的第一步,把全部 8 个指标聚合为一类,能解释的方差为 1.955233,占总方差的 24.44%,并预告这一类将被分裂。Cluster summary for 2 clusters Cluster Variation Proportion Cluster Members Variation Explained Explained 1 4 4 3.161575 0.7904 2 4 4 0.990168 0.2475 Total variation explained = 4.151743 Proportion = 0.5190 R-squared with Own Next 1-R*2 Cluster Variable Cluster Closest Ratio Cluster 1 X1 0.9367 0.0016 0.0634 X3 0.7963 0.0087 0.2055 X5 0.5792 0.1376 0.4880 X8 0.8741 0.0056 0.1266
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号