资源预览内容
第1页 / 共6页
第2页 / 共6页
第3页 / 共6页
第4页 / 共6页
第5页 / 共6页
第6页 / 共6页
亲,该文档总共6页全部预览完了,如果喜欢就下载吧!
资源描述
20182018 年中考数学必须掌握的考点年中考数学必须掌握的考点初中几何公式定理:线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理 1 关于某条直线对称的两个图形是全等形13、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初中几何公式定理:角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理 1 在角的平分线上的点到这个角的两边的距离相等23、定理 2 到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合初中几何公式定理:三角形25、定理三角形两边的和大于第三边26、推论三角形两边的差小于第三边27、三角形内角和定理三角形三个内角的和等于 18028、推论 1 直角三角形的两个锐角互余29、推论 2 三角形的一个外角等于和它不相邻的两个内角的和30、推论 3 三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理直角三角形两直角边 a、b 的平方和、等于斜边 c 的平方,即 a+b=c32、勾股定理的逆定理如果三角形的三边长 a、b、c 有关系 a+b=c,那么这个三角形是直角三角形初中几何公式定理:等腰、直角三角形33、等腰三角形的性质定理等腰三角形的两个底角相等34、推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论 3 等边三角形的各角都相等,并且每一个角都等于 6037、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论 1 三个角都相等的三角形是等边三角形39、推论 2 有一个角等于 60的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于 30那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半初中几何公式定理:相似、全等三角形42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理 3 三边对应成比例,两三角形相似(SSS)47、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理 2 相似三角形周长的比等于相似比 50、性质定理 3 相似三角形面积的比等于相似比的平方51、边角边公理有两边和它们的夹角对应相等的两个三角形全等52、角边角公理有两角和它们的夹边对应相等的两个三角形全等53、推论有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理有三边对应相等的两个三角形全等55、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等初中几何公式定理:四边形57、定理四边形的内角和等于 36058、四边形的外角和等于 36059、多边形内角和定理 n 边形的内角的和等于(n-2)18060、推论任意多边的外角和等于 36061、平行四边形性质定理 1 平行四边形的对角相等62、平行四边形性质定理 2 平行四边形的对边相等63、推论夹在两条平行线间的平行线段相等64、平行四边形性质定理 3 平行四边形的对角线互相平分65、平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形66、平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形67、平行四边形判定定理 3 对角线互相平分的四边形是平行四边形68、平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理 1 矩形的四个角都是直角70、矩形性质定理 2 矩形的对角线相等71、矩形判定定理 1 有三个角是直角的四边形是矩形72、矩形判定定理 2 对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理 1 菱形的四条边都相等74、菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即 S=(ab)276、菱形判定定理 1 四边都相等的四边形是菱形77、菱形判定定理 2 对角线互相垂直的平行四边形是菱形初中几何公式定理:正方形78、正方形性质定理 1 正方形的四个角都是直角,四条边都相等79、正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理 1 关于中心对称的两个图形是全等的81、定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式定理:等腰梯形83、等腰梯形性质定理等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形初中几何公式:等分87、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)2S=Lh92、(1)比例的基本性质如果 a:b=c:d,那么 ad=bc 如果 ad=bc,那么a:b=c:d93、(2)合比性质如果 a/b=c/d,那么(ab)/b=(cd)/d94、(3)等比性质如果 a/b=c/d=m/n(b+d+n0),那么,(a+c+m)/(b+d+n)=a/b95、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例96、推论平行于三角形一边的直线截其他两边(或个圆的内接正 n 边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形。
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号