资源预览内容
第1页 / 共11页
第2页 / 共11页
第3页 / 共11页
第4页 / 共11页
第5页 / 共11页
第6页 / 共11页
第7页 / 共11页
第8页 / 共11页
第9页 / 共11页
第10页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
本资料来源于七彩教育网http:/www.7caiedu.cn2010 届高考数学第三轮复习精编模拟三参考公式:参考公式:如果事件AB,互斥,那么 球的表面积公式()( )( )P ABP AP B 24SR如果事件AB,相互独立,那么 其中R表示球的半径()( )( )P A BP A P Bgg 球的体积公式如果事件A在一次试验中发生的概率是p,那么 343VRn次独立重复试验中事件A恰好发生k次的概率 其中R表示球的半径( )(1)(012)kkn k nnP kC ppkn , ,第一部分第一部分 选择题(共选择题(共 50 分)分)一选择题:本大题共一选择题:本大题共 10 小题,每小题小题,每小题 5 分,共分,共 50 分分.在每小题给出的四个选项中,只有在每小题给出的四个选项中,只有一项是符合题目要求的一项是符合题目要求的1、设集合A和B都是自然数集合N,映射:fAB把集合A中的元素n映射到集合B中的元素2nn,则在映射f下,象 20 的原象是 ( ) 2A 3B 4C 5D2、已知ar 、br 均为单位向量,它们的夹角为 60,那么ar 3br |= ( )A7 B10 C13D43、向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如右图所示,那么水瓶的形状是 ( )4、若 x 为三角形中的最小内角,则函数 y=sinx+cosx 的值域是( )A (1,2 B (0,23 C21,22 D (21,225、原市话资费为每 3 分钟 0.18 元,现调整为前 3 分钟资费为 0.22 元,超过 3 分钟的,每分钟按 0.11 元计算,与调整前相比,一次通话提价的百分率( )A不会提高 70% B会高于 70%,但不会高于 90%C不会低于 10% D高于 30%,但低于 100%6、已知an是等差数列,a1=-9,S3=S7,那么使其前 n 项和 Sn最小的 n 是( )A4B5C6D77、设 a,b 是满足 ab|ab| B|a+b|1,排除B,C,D,故应选 A。5:取 x4,y100%8.3%,排除 C、D;取 x30,y 0.33 - 0.360.36100%77.2%,排除 A,故选 B。3.19 - 1.81.86:等差数列的前 n 项和 Sn=2dn2+(a1-2d)n 可表示为过原点的抛物线,又本题中 a1=-90, S3=S7,可表示如图,由图可知,n=5273,是抛物线的对称轴,所以 n=5 是抛物线的对称轴,所以n=5 时 Sn最小,故选 B。7:A,B 是一对矛盾命题,故必有一真,从而排除错误支 C,D。又由 ab0,可令a=1,b= 1,代入知 B 为真,故选 B。8:借助立体几何的两个熟知的结论:(1)一个正方体可以内接一个正四面体;(2)若正方体的顶点都在一个球面上,则正方体的对角线就是球的直径。可以快速算出球的半径23R,从而求出球的表面积为3,故选 A。9:分析选择支可知,四条曲线中有且只有一条曲线不符合要求,故可考虑找不符合条件的357 OnnS曲线从而筛选,而在四条曲线中是一个面积最大的椭圆,故可先看,显然直线和曲线14922 yx是相交的,因为直线上的点)0 ,5(在椭圆内,对照选项故选 D。10:Cxxxfxf 2)lg( 2)()(2121,从而对任意的100,101x,存在唯一的100,102x,使得21, xx为常数。充分利用题中给出的常数 10,100。令10001001021xx,当100,101x时,100,10100012xx,由此得.23 2)lg(21xxC故选 A。二填空题:二填空题:1111、112xx ; 12、. nm ; 13、31a;14、3sin()32; 15、7 25;解析:解析:11:不等式0121 xx等价于1 210xx,也就是1102xx,所以112x ,从而应填112xx 12: )1 (log)1 (log)1 (log2tttaaaQ,不论a的值如何,)1 (log2ta与)1 (logta同号,所以. nm 13:题设条件等价于点(0,1)在圆内或圆上,或等价于点(0,1)到圆42)(22ayax的圆心的距离不超过半径,31a。14.解:由正弦定理得1,2sinsin()33 即23sin()sin332,所求直线的极坐标方程为3sin()32.15.解:44,ADDBOCODOCODQ即35OCOD,22 237cos22cos12121525OD OC 三解答题:三解答题:16解:()函数 2 2log (6)yxx要有意义需满足:260xx即260xx,解得32x , | 32Axx 3 分函数21 12yxx要有意义需满足21012xx,即2120xx,解得3x 或4x |34Bx xx 或6 分()由()可知 | 32Axx , |34Bx xx 或,AB I |32UC Ax xx Q或,() |32.UC ABx xx U或12分17.解:(I)因为na是等比数列,1 21, 0, 1n naaaaaa又,2111aaabaabnnn2 分.2 11 21211aaa aa aaaa bbnnnnnnnnnn nb是以 a 为首项,2a为公比的等比数列.6 分(II) (I)中命题的逆命题是:若nb是等比数列,则na也是等比数列,是假命题.8 分设nb的公比为q则0,21211qqaa aaaa bbnnnnnnnn且又aaa21, 1LL,12531naaaa是以 1 为首项,q 为公比的等比数列,LLnaaaa2642,是以a为首项,q 为公比的等比数列.10 分即na为 1,a,q,aq,q2,aq2,但当 qa2时,na不是等比数列故逆命题是假命题.12 分另解:取 a=2,q=1 时,)(2,)(2)(1*Nnbnnann 为偶数为奇数因此nb是等比数列,而na不是等比数列.故逆命题是假命题.12 分18.解:(1)设选对一道“可判断个选项是错误的”题目为事件 A, “可判断个选项是错误的”该题选对为事件 B, “不能理解题意的”该题选对为事件 C.则111( ), ( ), ( )234P AP BP C- 所以得分的概率21111 ( )( )( )43448PP AP BP C4 分(2) 该考生得 20 分的概率2 ( )( ) ( )PP AP B P C=1236 434485 分该考生得 25 分的概率:122 2( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )PC P A P A P B P CP AP B P CP AP B P C=2123113121172 ( )23443443448 6 分该考生得 30 分的概率:2112 22 ( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )PP AP B P CC P A P A P B P CC P A P A P B P CP AP B P C=2212311211113111( )22( )23422342234234 = 17 48-7 分该考生得 35 分的概率:122 2( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )PC P A P A P B P CP AP B P CP AP B P C=22111111312172( )( )223423423448 9 分17761 48484848 该考生得 25 分或 30 分的可能性最大11 分(3)该考生所得分数的数学期望617177120253035404848484848E=335 1214分19解:()由2230xyDxEy知圆心 C 的坐标为(,)22DE-(1 分) 圆 C 关于直线10xy 对称点(,)22DE在直线10xy 上 -(2 分)即 D+E=2,-且221224DE-(3分)又圆心 C 在第二象限 0,0DE -(4 分)由解得 D=2,E=4 -(5 分)所求圆 C 的方程为:222430xyxy -(6 分)()Q切线在两坐标轴上的截距相等且不为零,设l:xy -(7 分)Q圆 C:22(x1)(y2)2圆心c( 1,2)到切线的距离等于半径2,即1222 13 或。 -(12 分)所求切线方程xy1xy30或 -(14 分)20 ()证明:在正方体1111ABCDABC D中,平面11AABB平面11DDCC平面EGFD1I平面11AABBEG,平面EGFD1I平面11DDCCFD1EGFD1.-3 分()解:如图,以 D 为原点分别以 DA、DC、DD1为x、y、z 轴,建立空间直角坐标系,则有D1(0,0,2) ,E(2,1,2) ,F(0,2,1) ,)0, 1,2(1ED,)1,2,0(1FD设平面EGFD1的法向量为 ),(zyxn 则由01EDn,和01FDn,得 0202 zyyx,取1x,得2y,4z,)4,2, 1(n -6 分又平面ABCD的法向量为1DD(0,0,2)故212142
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号