资源预览内容
第1页 / 共12页
第2页 / 共12页
第3页 / 共12页
第4页 / 共12页
第5页 / 共12页
第6页 / 共12页
第7页 / 共12页
第8页 / 共12页
第9页 / 共12页
第10页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
问题 3:电磁感应中的“双杆问题” 电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定 律和动量定理、动量守恒定律及能量守恒定律等。要求学生综合上述知识,认识题目所给 的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热 点。 下面对“双杆”类问题进行分类例析1.“双杆”向相反方向做匀速运动 当两杆分别向相反方向运动时,相当于两个电池正向串联。 例 5 两根相距 d=0.20m 的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强 磁场中,磁场的磁感应强度 B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条 金属细杆的电阻为 r=0.25,回路中其余部分的电阻可不计。已知两金属细杆在平行于导 轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是 v=5.0m/s,如图所示,不计 导轨上的摩擦。 (1)求作用于每条金属细杆的拉力的大小。 (2)求两金属细杆在间距增加 0.40m 的滑动过程中共产生的热量。解析:(1)当两金属杆都以速度 v 匀速滑动时,每条金属杆中产生的感应电动势分别为: E1=E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:因拉力与安培力平衡,作用于每根金属杆的拉力的大小为 F1=F2=IBd。由以上各式并代入数据得N(2)设两金属杆之间增加的距离为L,则两金属杆共产生的热量为,代入数据得 Q=1.2810-2J。2.“双杆”同向运动,但一杆加速另一杆减速 当两杆分别沿相同方向运动时,相当于两个电池反向串联。 例 6 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为 L。导轨 上面横放着两根导体棒 ab 和 cd,构成矩形回路,如图所示。两根导体棒的质量皆为 m, 电阻皆为 R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场, 磁感应强度为 B。设两导体棒均可沿导轨无摩擦地滑行。开始时,棒 cd 静止,棒 ab 有指 向棒 cd 的初速度 v0。若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少。 (2)当 ab 棒的速度变为初速度的 3/4 时,cd 棒的加速度是多少?解析:ab 棒向 cd 棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产 生感应电流。ab 棒受到与运动方向相反的安培力作用作减速运动,cd 棒则在安培力作用下 作加速运动。在 ab 棒的速度大于 cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速。两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流, 两棒以相同的速度 v 作匀速运动。(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有 根据能量守恒,整个过程中产生的总热量 (2)设 ab 棒的速度变为初速度的 3/4 时,cd 棒的速度为 v1,则由动量守恒可知:此时回路中的感应电动势和感应电流分别为:,此时棒所受的安培力: ,所以棒的加速度为 由以上各式,可得 。3. “双杆”中两杆都做同方向上的加速运动。 “双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两 杆以同样加速度做匀加速直线运动。 例 7(2003 年全国理综卷)如图所示,两根平行的金属导轨,固定在同一水平面上,磁 感应强度 B=0.50T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。导轨 间的距离 l=0.20m。两根质量均为 m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动, 滑动过程中与导轨保持垂直,每根金属杆的电阻为 R=0.50。在 t=0 时刻,两杆都处于静 止状态。现有一与导轨平行、大小为 0.20N 的恒力 F 作用于金属杆甲上,使金属杆在导轨 上滑动。经过 t=5.0s,金属杆甲的加速度为 a=1.37m/s2,问此时两金属杆的速度各为多少?解析:设任一时刻 t 两金属杆甲、乙之间的距离为 x,速度分别为 v1 和 v2,经过很短的时 间t,杆甲移动距离 v1t,杆乙移动距离 v2t,回路面积改变由法拉第电磁感应定律,回路中的感应电动势 回路中的电流 杆甲的运动方程 由于作用于杆甲和杆乙的安培力总是大小相等,方向相反,所以两杆的动量时为0)等于外力 F 的冲量 联立以上各式解得 代入数据得点评:题中感应电动势的计算也可以直接利用导体切割磁感线时产生的感应电动势公式和 右手定则求解:设甲、乙速度分别为 v1 和 v2,两杆切割磁感线产生的感应电动势分别为 E1Blv1 ,E2Blv2 由右手定则知两电动势方向相反,故总电动势为 EE2E1Bl(v2v1) 。分析甲、乙两杆的运动,还可以求出甲、乙两杆的最大速度差:开始时,金属杆甲在恒力 F 作用下做加速运动,回路中产生感应电流,金属杆乙在安培力作用下也将做加速运 动,但此时甲的加速度肯定大于乙的加速度,因此甲、乙的速度差将增大。根据法拉第电 磁感应定律,感应电流将增大,同时甲、乙两杆所受安培力增大,导致乙的加速度增大, 甲的加速度减小。但只要 a 甲a 乙,甲、乙的速度差就会继续增大,所以当甲、乙两杆的 加速度相等时,速度差最大。此后,甲、乙两杆做加速度相等的匀加速直线运动。 设金属杆甲、乙的共同加速度为 a,回路中感应电流最大值 Im。对系统和乙杆分别应用牛 顿第二定律有:F=2ma;BLIm=ma。由闭合电路欧姆定律有 E=2ImR,而 由以上各式可解得4.“双杆”在不等宽导轨上同向运动。 “双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量 守恒定律解题。 例 8(2004 年全国理综卷)图中 a1b1c1d1 和 a2b2c2d2 为在同一竖直平面内的金属导轨, 处在磁感应强度为 B 的匀强磁场中,磁场方向垂直于导轨所在平面(纸面)向里。导轨的 a1b1 段与 a2b2 段是竖直的,距离为 l1;c1d1 段与 c2d2 段也是竖直的,距离为 l2。x1 y1与 x2 y2 为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为 m1 和 m2,它们都 垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为 R。F 为作用于金 属杆 x1y1 上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作 用于两杆的重力的功率的大小和回路电阻上的热功率。解析:设杆向上的速度为 v,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。由法拉第电磁感应定律,回路中的感应电动势的大小 回路中的电流 电流沿顺时针方向。两金属杆都要受到安培力作用,作用于杆 x1y1 的安培力为方向向上,作用于杆 x2y2 的安培力为 方向向下,当杆作匀速运动时,根据牛顿第二定律有 解以上各式得 作用于两杆的重力的功率的大小 电阻上的热功率 由式,可得 问题 4:电磁感应中的一个重要推论安培力的冲量公式感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为 F=BLI。在时间t 内安培力的冲量,式中 q是通过导体截面的电量。利用该公式解答问题十分简便,下面举例说明这一点。 例 9 如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为 L 的区域内, 有一个边长为 a(aL)的正方形闭合线圈以初速 v0 垂直磁场边界滑过磁场后速度变为 v(vv0)那么( ) A. 完全进入磁场中时线圈的速度大于(v0+v)/2 B. 安全进入磁场中时线圈的速度等于(v0+v)/2 C. 完全进入磁场中时线圈的速度小于(v0+v)/2 D. 以上情况 A、B 均有可能,而 C 是不可能的解析:设线圈完全进入磁场中时的速度为 vx。线圈在穿过磁场的过程中所受合外力为安培 力。对于线圈进入磁场的过程,据动量定理可得:对于线圈穿出磁场的过程,据动量定理可得:由上述二式可得,即 B 选项正确。例 10 光滑 U 型金属框架宽为 L,足够长,其上放一质量为 m 的金属棒 ab,左端连接有 一电容为 C 的电容器,现给棒一个初速 v0,使棒始终垂直框架并沿框架运动,如图所示。 求导体棒的最终速度。解析:当金属棒 ab 做切割磁力线运动时,要产生感应电动势,这样,电容器 C 将被充电, ab 棒中有充电电流存在,ab 棒受到安培力的作用而减速,当 ab 棒以稳定速度 v 匀速运动 时,有:BLv=UC=q/C 而对导体棒 ab 利用动量定理可得:BLq=mvmv0 由上述二式可求得: 问题 5:电磁感应中电流方向问题例 11(06 广东物理卷) 如图所示,用一根长为 L 质量不计的细杆与一个上弧长为,下弧长为的金属线框的中点联结并悬挂于 O 点,悬点正下方存在一个上弧长为、下弧长为的方向垂直纸面向里的匀强磁场,且先将线框拉开到如图所示位置,松手后让线框进入磁场,忽略空气阻力和摩擦。下列说法正确的是( ) A. 金属线框进入磁场时感应电流的方向为:abcda B. 金属线框离开磁场时感应电流的方向为:adcba C. 金属线框 dc 边进入磁场与 ab 边离开磁场的速度大小总是相等 D. 金属线框最终将在磁场内做简谐运动分析:金属线框进入磁场时,由于电磁感应,产生电流,根据楞次定律判断电流的方向为:adcba。金属线框离开磁场时由于电磁感应,产生电流,根据楞次定律判断电流的 方向为 abcda 。根据能量转化和守恒,可知,金属线框 dc 边进入磁场与 ab 边离开磁场的速度大小不相等。如此往复摆动,最终金属线框在匀强磁场内摆动,由于,单摆做简谐运动的条件是摆角小于等于 10 度,故最终在磁场内做简谐运动。答案为D。 小结:本题考查了感应电动势的产生条件,感应电流方向的判定,物体做简谐运动的条件, 这些是高中学生必须掌握的基础知识。感应电动势产生的条件只要穿过回路的磁通量发生 变化,回路中就产生感应电动势,若电路闭合则有感应电流产生。因此弄清引起磁通量的 变化因素是关键,感应电流的方向判定可用楞次定律与右手定则,在应用楞次定律时要把 握好步骤:先明确回路中原磁场的方向及磁通量的变化情况,再依楞次定律确定感应电流 的磁场方向,然后根据安培定则确定感应电流的方向。线圈在运动过程中的能量分析及线 框最终的运动状态的确定为此题增大了难度。 练习:06 四川卷 如图所示,接有灯泡 L 的平行金属导轨水平放置在匀强磁场中,一导体 杆与两导轨良好接触并做往复运动,其运动情况与弹簧振子做简谐运动的情况相同。图中O 位置对应于弹簧振子的平衡位置,P、Q 两位置对应于弹簧振子的最大位移处。若两导轨 的电阻不计,则( ) A. 杆由 O 到 P 的过程中,电路中电流变大 B. 杆由 P 到 Q 的过程中,电路中电流一直变大 C. 杆通过 O 处时,电路中电流方向将发生改变 D. 杆通过 O 处时,电路中电流最大解答:D问题 6:电磁感应中的多级感应问题 例 12 如图所示,ab、cd 金属棒均处于匀强磁场中,cd 原静止,当 ab 向右运动时,cd 如何运动(导体电阻不计) ( ) A. 若 ab 向右匀速运动,cd 静止; B. 若 ab 向右匀加速运动,cd 向右运动; C. 若 ab 向右匀减速运动,cd 向左运动分析:这是多级电磁感应问题,ab 相当于一个电源,右线圈相当于负载;左线圈相当于电 源,cd 相当于负载。ab 运动为因,切割磁感线产生感应电流为果,电流流过右线圈为因, 右线圈中形成磁场为果,右线圈磁场的磁感线通过左线圈,磁场变化时为因,左线圈中产 生感应电流为果,感应电流流过 cd 为因,cd 在左磁场中受安培力作用而运动为果。故 A
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号