资源预览内容
第1页 / 共5页
第2页 / 共5页
第3页 / 共5页
第4页 / 共5页
第5页 / 共5页
亲,该文档总共5页全部预览完了,如果喜欢就下载吧!
资源描述
习题 18 18-1 杨氏双缝的间距为mm2.0,距离屏幕为m1,求: (1)若第一级明纹距离为2.5m m,求入射光波长。 (2)若入射光的波长为6000 A,求相邻两明纹的间距。解 :( 1 ) 由Lxk d, 有 :xdk L, 将0 . 2 m md,1mL,12.5m mx,1k代 入 , 有 :33 72.5100.2105.010 1m ;即波长为:500 nm;(2)若入射光的波长为A6000,相邻两明纹的间距:7316103 0.210Dxmm d。18-2 图示为用双缝干涉来测定空气折射率n的装置。实验前,在长度为l的两个相同密封玻璃管内都充以一大气压的空气。现将上管中的空气逐渐抽去,( 1)则光屏上的干涉条纹将向什么方向移动;(2)当上管中空气完全抽到真空, 发现屏上波长为的干涉条纹移过N条。计算空气的折射率。 解: (1)当上面的空气被抽去,它的光程减小,所以它将 通过增加路程来弥补,条纹向下移动。(2)当上管中空气完全抽到真空,发现屏上波长为的干涉条纹移过N条,可列出:Nnl)(1得:1 lNn。18-3 在图示的光路中,S为光源, 透镜1L 、2L 的焦距都为f,求( 1)图中光线SaF与光线SO F的光程差为多少?(2)若光线SbF路径中有长为l,折射率为 n 的玻璃,那么 该光线与SO F的光程差为多少?。解:( 1)图中光线SaF与光线SOF的几何路程相同,介质相同,透镜不改变光程,所以SaF与光线SO F光程差为0。( 2)若光线SbF路径中有长为l,折射率为n 的玻璃,那么光程差为几何路程差与介质折射率差的乘积,即:(1)nl。18-4 在玻璃板(折射率为50.1)上有一层油膜(折射率为30.1) 。已知对于波长为nm500和nm700的垂直入射光 都发生反射相消,而这两波长之间没有别的波长光反射相消,求此油膜的厚度。解 : 因 为 油 膜 (1.3n油) 在 玻 璃 (1.5n玻) 上 , 所 以 不 考 虑 半 波 损 失 , 由 反 射 相 消 条 件 有 :2(21)1 2 2nekk油, ,当12500700nmnm时,11222(21) 22(21) 2neknek油油2121217215kk,因为12,所以12kk,又因为1与2之间不存在以满足2(21) 2nek油式,即不存在21kkk的情形,所以1k、2k应为连续整数,可得:14k,23k;油膜的厚度为:17121 6.7310 4k em n油。18-5 一块厚m2.1的折射率为50.1的透明膜片。设以波长介于nm700400的可见光垂直入射,求反射光中哪些波长的光最强? 解:本题需考虑半波损失。由反射干涉相长,有:2(21)1 2 2n ekk, ,66441.51.2107.210212121n ekkk;当5k时,5800 nm(红外线,舍去) ;当6k时,6654.5 nm;当7k时,7553.8 nm;当8k时,8480 nm;当9k时,9823.5 nm;当10k时,10378.9 nm(紫外线,舍去) ;反射光中波长为654.5 nm、553.8 nm、480 nm、823.5 nm的光最强。18-6 用589.3 nm的光垂直入射到楔形薄透明片上,形成等厚条纹,已知膜片的折射率为52.1,等厚条纹相邻纹间距为5.0 mm,求楔形面间的夹角。解:等厚条纹相邻纹间距为: 2l n,953589.3103.8810 221.525.010rad n l,即:53.88101800.002228 18-7 人造水晶珏钻戒是用玻璃(折射率为50.1)做材料,表面镀上一氧化硅(折射率为0.2)以增强反射。要增强nm560垂直入射光的反射,求镀膜厚度。解:由于nn硅玻,所以要考虑半波损失。由反射干涉相长公式有:2(21)1 2 2nekk硅, ,。当1k时,为膜的最小厚度。得:(21)(21)70 4ekknm n硅,1 2k,。镀膜厚度可为70 nm,210 nm,350 nm,490 nm,。18-8 由两平玻璃板构成的一密封空气劈尖,在单色光照射下,形成4001条暗纹的等厚干涉,若将劈尖中的空气抽空,则留下4000条暗纹。求空气的折射率。 解:本题需考虑半波损失。由40012knd,而40002kd由 / 得:00025.1 40004001n。18-9 用钠灯(nm3.589)观察牛顿环,看到第k条暗环的半径为mm4r,第5k条暗环半径mm6r,求所用平凸透镜的曲率半径R。解:考虑半波损失,由牛顿环暗环公式:rkR,0 1 2k,有:33410610(5)kRkR235kk4k,232 19(410)6.79 4589.310r Rm k。18-10 柱面平凹透镜A,曲率半径为R,放在平玻璃片B上,如图所示。现用波长为的平行单色光自上方垂直往下照射,观察A和B间空气薄膜的反射光的干涉条纹。设空气膜的最大厚度2d。(1)求明、暗条纹的位置( 用r表示 ) ;(2)共能看到多少条明条纹;(3)若将玻璃片B向下平移,条纹如何移动?解:设某条纹处透镜的厚度为e ,则对应空气膜厚度为de,ede那么:22rde R,22 22ek, (123k,明纹) ,2(21) 22ek, (012k,暗纹);(1)明纹位置为:212() 4krR d,12k,暗纹位置为:2() 2krR d,012k,;(2)对中心处,有:m ax2ed,0r,代入明纹位置表示式,有:max4.54k,又因为是 柱面 平凹透镜,明纹数为8 条;(3)玻璃片B向下平移时,空气膜厚度增加,条纹由里向外侧移动。18-11 利用迈克尔孙干涉仪可以测量光的波长。在一次实验中,观察到干涉条纹,当推进可动反射镜时,可看到条纹在视场中移动。当可动反射镜被推进0.187mm时,在视场中某定点共通过了635 条暗纹。试由此求所用入射光的波长。解:由 2dN,3 7220.187105.8910()589 635dmnm N。18-12 在用迈克尔逊干涉仪做实验时,反射镜移动了0.3220lmm距离。在此过程中观察到有1024 条条纹在视场中移过。求实验所用光的波长。解:由 2lN,有:3 7220.322106.28910()628.9 1024lmnm N。思考题 18 18-1 在劈尖的干涉实验中,相邻明纹的间距_(填相等或不等) ,当劈尖的角度增加时,相邻明纹的间距离将_(填增加或减小) ,当劈尖内介质的折射率增加时,相邻明纹的间距离将_(填增加或减小) 。答:根据相邻条纹的间距: 2l n,条纹间距相等;当劈尖的角度增加时,相邻明纹的间距离将减小;当劈尖内介质的折射率增加时,相邻明纹的间距离将减小。18-2 图示为一干涉膨胀仪示意图,上下两平行玻璃板用一对热膨胀系数极小的石英柱支撑着,被测样品W在两玻璃板之间 , 样品上表面与玻璃板下表面间形成一空气劈尖,在以波长为的单色光照射下,可以看到平行的等厚干涉条纹。当W 受热膨胀时,条纹将:(A)条纹变密,向右靠拢;(B)条纹变疏,向上展开;(C) 条纹疏密不变,向右平移;(D) 条纹疏密不变,向左平移。答:由于W受热膨胀时,虽空气劈尖变小,但劈尖角不变,根据相邻条纹的间距: 2l n,知间距不变;干涉条纹反映了厚度,所以当厚度向左平移,则相应的条纹也向左平移。选择( D)。18-3 如图所示,在一块光学平玻璃片B上,端正地放一锥顶角很大的圆锥形平凸透镜A,在A、B间形成劈尖角很小的空气薄层。当波长为的单色平行光垂直地射向平凸透镜时,可以观察到在透镜锥面上出现干涉条纹。(1)画出于涉条坟的大致分布并说明其主要特征;(2)计算明暗条纹的位置;(3)若平凸透镜稍向左倾斜,干涉条纹有何变化?用图表示。答: (1)图略,分析:这是一个牛顿环和劈尖的综合体,所以它的形状类似于牛顿环,也属于等厚干涉,干涉条纹是中心处为暗纹,一系列间隔均匀的同心圆环;(2)计算明暗条纹的位置;明条纹:2ne 2k,暗条纹:2ne21 22k();(3)若平凸透镜稍向左倾斜,干涉条纹将不再是对称的圆环,而是左密右疏的类圆环。图示略。18-4 若待测透镜的表面已确定是球面,可用观察等厚条纹半径变化的方法来确定透镜球面半径比标准样规所要求的半径是大还是小。如图,若轻轻地从上面往下按样规,则图_中的条纹半径将缩小,而图_中的条纹半径将增大。答:设工件为 L,标准样规为 G 。若待测工件表面合格,则L与G之间无间隙,也就没有光圈出现。如果L的曲率 R太小(如图 b) ,则 L与G 的光圈很多,轻压后中心仍然为暗斑,但条纹半径要减小;如果L的曲率 R太大(如图 a) ,则 L与G的光圈除边缘接触,中间部分形成空气膜,轻压后中心斑点明暗交替变化,而且所有光圈向外扩展。第一空选 b,第二空选 a。18-5 图 a 为检查块规的装置,0G为标准块规,G为上端面待测的块规,用波长为的平行光垂直照射,测得平晶与块规之间空气劈尖的干涉条纹如图所示,对于与0G和G的条纹间距分别为0l和l,且ll0。若将G转过0180,两侧条纹均比原来密。(1)判断并在图c 中画出G规上端面的形貌示意图;(2)求G规左、右侧与0G的高度差。答: (1)根据相邻条纹的间距: 2l,对于0G和G的条纹间距分 别为0l和l,ll0,可知0。将G转过0180,两侧条纹均比原来密,即角度变大了,所以图中G的形状为:(2)求G规左、右侧与0G的高度差。00sin 2LhL l左,lLlLlLhLh 222sin0左右。18-6 牛顿环装置中平凸透镜与平板玻璃间留有一厚度为0e的气隙,若已知观测所用的单色光波长为,平凸透镜的曲率半径为R。(1)试导出k级明条纹和暗条纹的公式; (2)若调节平凸透镜与平板玻璃靠近,试述此过程中牛顿环将如何变化?条纹宽度kr与 e 的厚度(3)试判别在调节过程中,在离开中心r处的牛顿环某干涉有无关系?叙述简明理由,并算出在该处的条纹宽度。 答: (1)与牛顿环计算相似:明条纹:kee 220)(,(k=1 , 2, ) 暗条纹: 212 220)()(kee,(k=1 ,2, ) (2)若调节平凸透镜与平板玻璃靠近,则厚度向边缘走动,根据等厚条纹的定义,相应的条纹也要向边缘移动,即条 纹扩展。(3)在调节过程中,在离开中心r处的牛顿环某干涉条纹宽度kr与 e 的厚度有关系。根据: Rre 22比如暗环半径:202() 2rek R02rkeR()那么00122rkeRkeR()()由于平方根的存在,所以e0不能抵消,对条纹宽度产生影响。G0 G
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号