资源预览内容
第1页 / 共8页
第2页 / 共8页
第3页 / 共8页
第4页 / 共8页
第5页 / 共8页
第6页 / 共8页
第7页 / 共8页
第8页 / 共8页
亲,该文档总共8页全部预览完了,如果喜欢就下载吧!
资源描述
?36?8?Vol.36, No.82016?8?Systems Engineering Theory ?;?A belief-rule-based inference method for modeling systems under uncertaintiesGUO Min(School of Economics and Management, Northern University of China, Taiyuan 030051, China)Abstract Belief-rule-based inference methodology using the evidential reasoning approach (RIMER) is a novel modeling methodology for systems under various uncertainties. In this paper, some basic charac- teristics of RIMER are analyzed. It is proved that RIMER is capable to model deterministic or stochasticsystems with sufficient accuracy. To handle more complex uncertainties with local or global unknown, an extended belief-rule-based inference framework is proposed. A numerical example (newsvendor inventory optimizing problem) is provided to illustrate the implementation process of the new RIMER approach and its validity and applicability.Keywords belief-rule-based inference; complex uncertainty; inventory1?,?: 1)?,?,?; 2)?,?,?;?,?,?1.?.?,?:1)?,?,?2.?.?,?,?.2)?,?,?.?,?34.?: 2015-06-01?:?(1969),?,?,?,?,?:?,?.?:?(70971046) Foundation item: National Natural Science Foundation of China (70971046)?:?.?J.?, 2016, 36(8): 19751982.?: Guo M. A belief-rule-based inference method for modeling systems under uncertaintiesJ. Systems Engineering Theory (?, 50%),?50%?“?”“?”?,?(incompleteness)?(unknown).2)?.?,?IF THEN?,?,?,?.?.?,?,?.2?2.1?,?,?,?,?,?6:R = .?U = Ui,i = 1,2,I?, A = A1,A2,AI?,?i?Ui?Ai = Aip,p = 1,2,|Ai|,?Aip?Ui?, |Ai|?Ai?.?“?” (, AND)?“?” (, OR)?. D = Dn,n =1,2,N?, N?. F?,?L?,?k?:Rk: IF A(k)1A(k)2A(k)ITHEN (D1,(k)1);(D2,(k)2);(DN,(k)N),?k,?(k)1,(k)2,(k)I.?A(k)i Ai, i = 1,2,I, (k)n?Dn?, n = 1,2,N,?n=1,2,N(k) n 1.?(k)i?Ui?I?,?k?Rk?8?:?1977?F?. 2.2?,?,?:1)?,?F?.?(?1 ?2 ?I) ,?i= (Aip,ip),p = 1,2,|Ai|?i?Ui?(?), ip?Ui?Aip?,?ip 0? p=1,2,|Ai|ip 1.?,?k?,?wk:?,?k?k.?“?” (, AND)?,? k=?i=1,2,I(k)i)(k) i.?(k) i=(k)i max j=1,2,I(k) j, (k) i= (ip|A(k)i= Aip),?k?Ui?A(k)i?Aip?(k)i?ip.?,?k?k?k,?k?:wk=kk?i=1,2,Lii.?k?(D1,(k)1);(D2,(k)2);(DN,(k)N)?wk,?. 2)?(ER?)8:?,?D-S?(mass)?,?k = 1,2,L,?:mn,k= wk(k)n,n = 1,2,N,mH,k= 1 ?n=1,2,Nmn,k= 1 wk?n=1,2,N(k)n, mH,k= 1 wk, mH,k= wk1 ?n=1,2,N(k)n,?mH,k= mH,k+ mH,k.?,?L?,?:m?n=?k=1,2,L(mn,k+ mH,k+ mH,k) ?k=1,2,L( mH,k+ mH,k),n = 1,2,N(1) m?H=?k=1,2,L( mH,k+ mH,k) ?k=1,2,L mH,k(2) m?H=?k=1,2,L mH,k(3)?,?:mn= Km?n(4) mH= K m?H(5) mH= K m?H(6)K =?n=1,2,N?k=1,2,L(mn,k+ mH,k+ mH,k) (N 1)?k=1,2,L( mH,k+ mH,k)1(7)?,?S(D) = (Dn,n),n = 1,2,N,?n=mn 1 mH, n = 1,2,N?Dn?,?(?D1 DN?)?H= 1 ? n=1,2,Nn.1978?36?3)?,?,?:u(S(D) =?n=1,2,Nu(Dn)n.?u()?,?,?u(Dn1) u(Dn), n = 2,3,N.?,?,?:uMax(S(D) =?n=1,2,N1u(Dn)n+ (N+ H)u(DN),uMin(S(D) =?n=2,3,Nu(Dn)n+ (1+ H)u(D1),?: uAvg(S(D) =uMin(S(D)+uMax(S(D) 2.3?3.1?2?,?,?,?.?1?,?.?(?).?y = y(x),?,?x,?y.?x?x1,x2,xk,xN,?xk?x?.?,?xk1,?i?Ui,?Aip,q,p = 1,2,|Ai|,q = p,|Ai|,?Aip,q?Aip,Aiq.?p = q?Aip,q?Aip,p= Aip.?D,?Dp,q,p = 1,2,N,q = p,N,?Dp,q? Dp,Dq.?p = q?Dp,q?Dp,p= Dp.2)?.?
收藏 下载该资源
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号