资源预览内容
第1页 / 共21页
第2页 / 共21页
第3页 / 共21页
第4页 / 共21页
第5页 / 共21页
第6页 / 共21页
第7页 / 共21页
第8页 / 共21页
第9页 / 共21页
第10页 / 共21页
亲,该文档总共21页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
数学(新课标卷)数学(新课标卷). 命题指导思想命题指导思想坚持“有助于高校科学公正地选拔人才,有助于推进普通高中课程改革,实施素质教育”的原则,体现普通高中课程标准的基本理念,以能力立意,将知识、能力和素质融为一 体,全面检测考生的数学素养. 发挥数学作为主要基础学科的作用,考查考生对中学数学的 基础知识、基本技能的掌握程度,考查考生对数学思想方法和数学本质的理解水平,以及进 入高等学校继续学习的潜能. 考试内容与要求考试内容与要求一、考核目标与要求1.知识要求知识是指普通高中数学课程标准(实验)(以下简称课程标准)中所规定的必修课 程、选修课程系列 2 和系列 4 中的数学概念、性质、法则、公式、公理、定理以及由其内 容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本 技能. 各部分知识的整体要求及其定位参照课程标准相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次.(1)了解要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定 的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.(2)理解要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识 作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别 、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想像,比较、判别, 初步应用等.(3)掌握要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究 、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、 运用、解决问题等.2.能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能 力以及应用意识和创新意识.(1)空间想象能力能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本 元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的 本质.空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图 形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语 言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换.对图形的想 象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.(2)抽象概括能力抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对 象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括, 而概括必须在抽象的基础上得出某种观点或某个结论.抽象概括能力是对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质 ;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或作出新的判断.(3)推理论证能力推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前 提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法 既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般 运用合情推理进行猜想,再运用演绎推理进行证明.中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学 命题真实性的初步的推理能力.(4)运算求解能力会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合 理、简捷的运算途径,能根据要求对数据进行估计和近似计算. 运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对 式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条 件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实 施运算过程中遇到障碍而调整运算的能力.(5)数据处理能力会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断. 数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际 问题.(6)应用意识能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中 简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类 ,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学 语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将 现实问题转化为数学问题,构造数学模型,并加以解决.(7)创新意识能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的 方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决 问题. 创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发 现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新 意识也就越强.3.个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数 学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意 义. 要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.4.考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的 纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数 学试卷的框架结构.(1)对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内 容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻 意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设 计试题,使对数学基础知识的考查达到必要的深度.(2)对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必 须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想方法的掌握程度.(3)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把 握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综 合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体 理性思维的广度和深度以及进一步学习的潜能. 对能力的考查要全面考查能力,强调综合性、应用性,并要切合学生实际. 对推理论证 能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性; 对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算 求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查 主要考查运用概率统计的基本方法和思想解决实际问题的能力。(4)对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公 平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实 践经验,使数学应用问题的难度符合考生的水平.(5)对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构 造有一定深度和广度的数学问题,要注重问题的多样化,体现思维的发散性;精心设计考查 数学主体内容、体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索 型、开放型等类型的试题.数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学 能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性, 重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查 综合数学素养的要求. 命题以教育部考试中心普通高等学校招生全国统一考试数学(文科)考试大纲(课程标准实 验2012 年版)和本说明为依据.试题适用于使用全国中小学教材审定委员会初审通过的各 版本普通高中课程标准实验教科书的考生. 二、考试范围与要求二、考试范围与要求(一)必考内容与要求(一)必考内容与要求1集合(1)集合的含义与表示了解集合的含义、元素与集合的“属于”关系。能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。(2)集合间的基本关系理解集合之间包含与相等的含义,能识别给定集合的子集。在具体情境中,了解全集与空集的含义。(3)集合的基本运算理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。理解在给定集合中一个子集的补集的含义,会求给定子集的补集。能使用韦恩图(Venn)表达集合的关系及运算。2函数概念与基本初等函数 I(指数函数、对数函数、幂函数)(1)函数了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表 示函数。了解简单的分段函数,并能简单应用。理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性 的含义。会运用函数图像理解和研究函数的性质。(2)指数函数了解指数函数模型的实际背景。理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。理解指数函数的概念,理解指数函数的单调性,掌握函数图像通过的特殊点。(3)对数函数理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用 对数;了解对数在简化运算中的作用。理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点。了解指数函数与对数函数互为反函数(a0,a1) 。xay xyalog(4)幂函数了解幂函数的概念。结合函数的图象,了解它们的变化情况。21 321xyxyxyxyxy且且且且(5)函数与方程结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在 性及根的个数。根据具体函数的图像,能够用二分法求相应方程的近似解。(6)函数模型及其应用了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增 长等不同函数类型增长的含义。了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用 的函数模型)的广泛应用。3立体几何初步(1)空间几何体认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中 简单物体的结构。能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等简易组合)的三视图,能识 别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图。会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图 形的不同表示形式。会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严 格要求) 。了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式) 。(2)点、直线、平面之间的位置关系理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理:公理 1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内。公理 2:过不在同一条直线上的三点,有且只有一个平面。公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共 直线。公理 4:平行于同一条直线的两条直线互相平行。定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互 补。以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的 有关性质与判定定理。理解以下判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。如果一个平面内的两条相交直线与另一个平面都平行,那么这两
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号