资源预览内容
第1页 / 共11页
第2页 / 共11页
第3页 / 共11页
第4页 / 共11页
第5页 / 共11页
第6页 / 共11页
第7页 / 共11页
第8页 / 共11页
第9页 / 共11页
第10页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
学生姓名年级授课时间教师姓名课时2h 课题函数概念,定义域,解析式,值域教学目标1 了解构成函数的要素,会求一些简单函数的2 定义域和值域;了解映射的概念. 3 会求一些简单函数的定义域. 4 会求简单的复合函数的定义域5 已知函数定义域,会求函数表达式中的参数的取值范围(函数定义域的逆向求解问题)重点构造法和递推法中各类型的区别,通过用心感悟去了解函数概念,学会求函数定义域,解析式,值域,掌握一些常规的题型难点抽象函数的定义域以及解析式的求解一、函数的概念:具有方向性,xyX A,y B设函数的定义域为X,值域为Y,则,XA YBA 与 B 定义有非空的数集上函数是一对一或多对一的对应定义域、值域、对应法则称为函数的三要素若两个函数的定义域及对应法则相同,则这两个函数的解析式相同映射是一对一或多对一的对应( B 中元素不一定有原象, A 中元素一定有象)例 1 下列等式是函数吗?()yx()1y x()2yxy=x32132BA1y=1x1312132BA1y=x+254332BA1()2yx()1y-3-2-1y=x294132BA1y=1132BA1例 2 由下列各式能否确定y是x的函数2200xxy xx32yx221xy323yxx2. 1yxx例 3 下列函数中哪个与函数y = x 是同一个函数?(1)y =2x(2) y = xx2 (3) y = 33x(4) y = 2x练习2 1 已知集合,| ,AR Bx yx yR,映射:fAB的对应法则是2:1,1fxxx,求 A 中元素3的象和 B 中元素3 5, 2 42 设| 04 ,| 02AxxByy,下列集合不表示从集合到集合B 的函数是()A、2xyB、3xyC、23xyD、yx3 判断下列各组中的两个函数是否是同一函数?为什么?13)5)(3( 1xxxy52xy2。111xxy) 1)(1(2xxy3。xxf)(2)(xxg4xxf)(33)(xxF52 1)52()(xxf52)(2xxf4 下列各题中的两个函数表示同一函数吗?请说明理由 . (1)f(x)=x, g(x)=2x; (2)f(x)=x, g(x)=33x(3) f(x)=1, g(x)=|xx; (4) f(x)=2x+1, g(t)=2t+1.定义域 :fx是整式,那么定义域为Rfx是分式,那么定义域是使分母不为零的x的集合fx是偶次根式,那么定义域是使根号内式子大于或等于零的x的集合fx是底数的零次幂,那么定义域是使底数不为零的x的集合若fx是由几个部分的式子构成,那么函数的定义的x的集合,即取交集例 1 求下列函数的定义域:(1)? (x)= 21x(2)? (x)=23x(3)? (x)=1x+x21(4)1|14)(2 xxxf(5)xxxf|1)(6) 5|9)(2xxxf (7) 2) 11(1)( xxxf复合函数的定义域。例 2 已知函数( )f x的定义域为( 1,3),则函数( )(1)(2)F xfxfx的定义域3 例 例 3 已知函数(1)fx的定义域为 (1,3),求函数( )f x的定义域;例 4 已知函数xf定义域为是,ba,且0ba, 求函数mxfmxfxh0m的定义域例 5 若 ? (x)有定义域为 -1 ,1 ,求函数? (x +1) 与 ? (x2)的定义域练习:1、求下列函数的定义域:221533xxyxxxxxxxf0 2) 1(65)(021(21)4111yxxx2、 设函数f x( )的定义域为 01, 则函数 f x()2的定义域为 _ _ _; 函数 fx()2 的定义域为 _;3、若函数(1)f x的定义域为 23,则函数(21)fx的定义域是;函数1(2)fx的定义域为。4 知函数fx( )的定义域为 1, 1,且函数( )()()F xf xmf xm的定义域存在,求实数m的取值范围。5 已知函数(1)f x的定义域为 (3,4),则函数(21)fx的定义域为 _ 6 若 ? (x)有定义域为 0 ,1 ,求函数? (x +m) + ? (x - m) 的定义域是空集,则正数m 的取值范围值域掌握利用二次函数、观察法、换元法、判别式法求函数的值域。1二次函数法例( 1)若x为实数,求y=x2+2x+3 的值域( 2)求函数242xxy的值域4 例 2 已知函数2( )23f xxx在0,a (0)a上的最大值为3,最小值为2,求实数a的取值范围例3已知函数22444aaaxxy在10x内有最大值 5,求 a的值2 判别式法(法)对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他行化简.112.22222222ba y型:直接用不等式性质k+x bxb. y型, 先化简,再用均值不等式 xmxn x1例: y1+xx+xxmxnc y型 通常用判别式 xmxn xmxnd. y型xn 法一:用判别式法二:用换元法,把分母替换掉xx1 (x+1) (x+1) +1 1例: y(x+1)1211x1x1x1例 1(1)求函数66522xxxxy 的值域(2)y= 122xxx(3)221223xxyxx(4)225941xxyx例 2 已知函数222( )1xaxbfxx的值 域为1 ,3 ,求,a b的值5 3 换元法例 1 求函数xxy142的值域例 2 (1)262xyx(3)4 利用单调性求最值例 1若函数2( )22, ,1f xxxxt t当时的最小值为( )g t,求函数( )g t当 t-3,-2时的最值例 2 已知函数12)(2axxxf在区间 1, 2上的最大值为4,求a的值2、求反函数的定义域法(分离常数法 ) 例求下列函数的值域: (1)5 12xxy(2)1312xxy(3) 1214xxy(4)5413xxy+1 练习1求下列函 数的值域(1)223yxx()xR223yxx1,2x311xyx311xyx(5)x262xyx225941xxyx31yxx2yxx245yxx2445yxx12yxx6 (12)y = 12 2xxx(13)y = 23 2xx(14) y = 6532 22xxxx(15)y =225xx(16)y =13aa(17)xxy23122 解答题(1) 、求函数12)(2axxxf在区间 0 , 2 上的最值(2)已知函 数222( )1xaxbf xx的值域为1,3,求,a b的值。函数解析式的求解1 待定系数法:在已知函数解析式的构造时,可用待定系数法。例 1(1)已知fx是一次函数,且41ffxx,求fx(2)已知二次函数( )g x满足(1)1g,( 1)5g,图象过原点,求( )g x2 配凑法:已知复合函数( )f g x的表达式,求( )f x的解析式,( )f g x的表达式容易配成( )g x的运算形式时,常用配凑法。但要注意所求函数( )f x的定义域不是原复合函数的定义域,而是( )g x的值域例 2(1)已知221)1( xxxxf)0(x,求( )fx的解析式(2)1fxx求fx(3)已知2 211()1f xxxx,则( )f x3、换元法:已知复合函数( )f g x的表达式时,还可以用换元法求( )f x的解析式。与配凑法一样,要注意所换元的定义域的变化。例 3 (1) 已知xxxf2) 1(,求)1(xf(2)已知2(1)2fxxx,求( )f x. 7 4 代入法: 求已知函数关于某点或者某条直线的对称函数时,一般用代入法。例 4已知:函数)(2xgyxxy与的图象关于点)3 ,2(对称,求)(xg的解析式5 构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数 解析式。例 5设,)1(2)()(xxfxfxf满足求)(xf6、赋值法求抽象函数解析式:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进 行赋值,使问题具体化、简单化,从而求得解析式。例 6 已知:1)0(f,对于任意实数x、y,等式) 12()()(yxyxfyxf恒成立,求)(xf例 7 设)(xf是定义在N上的函数,满足1) 1(f,对任意的自然数ba,都有abbafbfaf)()()(,求)(xf例 8 设对满足 x0,x 1 的所有实数x,函数 f(x)满足 ,xxxfxf11, 求 f(x) 的解析式。练习1 若xxxf1)1(求 f(x) 、221)(,21)(xxxgfxxg(x 0) 求)21(f2 已知 f(x)=ax+b,且 af(x)+ b=ax+8 求 f(x) 已知二次函数( )h x与x轴的两交点为( 2,0),(3,0), 且(0)3h, 求( )h x;3 设,)(331xxxxf221)(xxxxg求 fg(x)。4 已知21)1(xxxf(x0) 求 f(x) 已知xxxf2)12(2求 f(x) 5 设( )f x的定义域为自然数集,且满足条件(1)( )( )f xfxf yxy,及(1)f=1,求( )f x6 函数 f( x) 对一切实数x,y 均有 f( x+y)- f(y)=( x+2y+1) x 成立,且f(1)=0 ,(1)求(0)f的值;8 课后作业一、选择题1、已知函数1fx的定义域为2,3,则2fx的定义域为()A2,3B1,4C16 ,D4,12、函数1 11fxxx的最大值是()A45B54C34D433、函数214,yxxxxZ的值域为()A0,12B1124,C0,2,6,12D2,6,124、函数1yxx的定义域为()A1x xB0x xC10x xx或D01xx5、函数11xyx的值域为()A11,B1,1C11,-,D11,-,6、下列函数fxg x与表示同一函数的是()A42fxxg xx与B2xfxxg xx与C211fxxg xx与D326fxxg xx与7下列各组函数中,表示同一函数的是(). A. 1,xyyxB. 211,1yxxyxC. 33,yxyxD. 2|,()yxyx8函数21232xyxx的定义域为(). A. (,1B. (,2C. 11(,)(,1 22D. 11(,)(,1 229 9、函数:f RR,满足0 1f,且对任意, x yR,均有12f xyf x f yf yx则有fx()A1xB1xC2xD2x10 集合22Mxx,02Nyy,给出下列四个图形,其中能表示以M 为定义域, N 为值域的函数关系的是() . 11 下列四个图象中,不是函数图象的是(). 12函数23)(xxxf的定义域为()A0,3 2 B0,3 C3,0 D ( 0,3)13函数251xyx的值域为()A5|2y yB|0y yC|25y yy且D2|5y y14若函数( )f x 的定义域为 ,a b,且0ba,则函数( )( )()g xf xfx 的定义域是()A ,abB,baC,bbD ,aa15函数2211xyx的值域为() A 1, 1B( 1, 1C 1, 1)D(,11,)16已知函数)(xf的定义域为 0,4,求函数)()3(2xfxfy的定义域为()A 2,1B1, 2C 2, 1D 1, 2二、填空题1、函数22 ,2,1fxxx x的值域是 _ 2 函数211fxxRx的值域是 _ 3 若22
网站客服QQ:2055934822
金锄头文库版权所有
经营许可证:蜀ICP备13022795号 | 川公网安备 51140202000112号